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Abstract

It is well known that functional programming and logic are deeply intertwined. This has led to
many systems capable of expressing both propositional and first order logic, that also operate as
well-typed programs.

What currently ties popular theorem provers together is their basis in intuitionistic logic,
where one cannot prove the law of the excluded middle, ‘A∨¬A’ – that any proposition is either
true or false. In classical logic this notion is provable, and the corresponding programs turn out
to be those with control operators.

In this report, we explore and expand upon the research about calculi that correspond with
classical logic; and the problems that occur for those relating to first order logic. To see how these
calculi behave in practice, we develop and implement functional languages for propositional
and first order logic, expressing classical calculi in the setting of a theorem prover, much like
Agda and Coq. In the first order language, users are able to define inductive data and record
types; importantly, they are able to write computable programs that have a correspondence with
classical propositions.
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1 | Introduction

Proof assistants are gaining in popularity. From helping to teach students how to write mathe-
matical proofs1 to the large scale projects like checking compiler correctness [13], they are seeing
more use in the computing world. Proof assistants are programming languages that correspond
with a formal logic, and come in different shapes and forms; Coq [72] has a particular focus on the
theorem proving aspect where proofs can be written with intuitive tactics, whereas the language
Agda [59] is first and foremost a functional programming language, like Haskell.

Under the hood, theorem provers ensure proof correctness by a strong type system. The
mainstream languages are all based on so-called intuitionistic type theory [46]. They all capitalise
on the astonishing fact that functions in a functional programming language correspond to proofs
in intuitionistic logic; and the types of these functions correspond to the propositions that are
derived by said proofs. Under this correspondence, type-checking a function is the same oper-
ation as checking a proof of a proposition [77].

Intuitionism inescapably ties these languages to the fact that they are unable to prove a simple
logical notion; that any proposition is either true or false. This is known as the law of the excluded
middle ((lem)), and it characterises the logic we call classical logic [23]. Intuitionistic logic rejects
this notion, and instead is based on the idea that any proof must be constructive; so a proof of ‘A
or B; must be constructed from a proof of either A or B – it is not enough to prove it can’t be the
case that ‘A or B’ is not true. This notion of constructive is strongly tied with computability, and it
was believed that a proof had a correspondence with a function only if the proof is constructive.

Until the 80s, it was believed that classical logic did not have a computational counterpart.
This belief was challenged when Griffin [33] discovered that a control operator, similar to the
call/cc function in Scheme, corresponded directly with an axiom of classical logic; double
negation elimination, which states that a proposition being ‘not not true’ is the same as it being
‘true’. This is another axiom that characterises classical logic. This spawned a new area of research
– calculi that correspond with classical logic [61, 20, 70].

In this report, we will explore the current state of research into classical calculi, both for
propositional and first order logic. We will then discuss how to use these calculi to form the core
of useable proof assistants, and evaluate our own implementations of such languages.

1.1 Report Outline

In Chapter 2 we review both propositional logic and first order logic. We also explore different
logical systems within propositional and first order logic, formalising the notions of intuitionistic
and classical logic. This is achieved by understanding each logic through their natural deduction
inference rules.

In Chapter 3 we will give a quick overview of the simply typed λ-calculus, some simple
extensions to it, and an algorithm to find the type of terms in the calculus. This will serve as
a strong formal foundation for the less well-known λµ-calculus, as well as prepare the reader for
our work later in the report.

Chapter 4 will introduce the λµ-calculus, which is one of the classical calculi hinted at in the
introduction. This will describe the idea of evaluation contexts and control operator, and we will
explore exactly how λµ relates to classical logic.

Chapter 5 will expand the correspondence to first order logic by introducing dependent types;
types that can depend on terms. This will allow us to express much more interesting logical
statements. In particular, as mathematics is a first order language, we will be able to express
theorems about maths. This chapter will also explore why dependent types and the classical
calculi don’t play nicely together, and how we are able to get them to work together soundly.

Chapter 6 serves as the centre of our work in classical propositional logic. We will present a
sound and complete principal pairing algorithm for the λµ-calculus, and extend it to allow for

1For example, the Xena Project https://wwwf.imperial.ac.uk/~buzzard/xena/
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sum and product types, and name polymorphic functions. This algorithm is then able to act as
the core of a proof assisstant for propositional logic.

In Chapter 7, we expand on the current work into dependently typed classical calculi, by
adding the ability to express coproducts, inductive families and records. Importantly, we will
also make sure these new types are able to be expressed safely, avoiding the problems that are
outlined in Chapter 5.

Implementations of the work in Chapters 6 and 7 are described in Chapter 8. We will focus
on some of the design choices made during development, difficulties we came across and a high
level overview of the software.

We assess both the theoretical and practical work in Chapter 9. In particular, we will highlight
desirable properties of the calculi that we haven’t yet proved. We will also discuss what parts of
the implementation were not completed, with respect to the theoretical work.

A brief discussion of the ethical issues of this work will be found in Chapter 10.
Finally, we summarise our work in Chapter 11, and outline how both the theoretical and

practical work could be developed and improved upon.

1.2 Contributions

The contributions of this report are as follows:

• Define a sound and complete principal pairing algorithm for the λµ-calculus.

• Extend λµ (with sum and product types) with functions that allow for name polymorphism,
along with an associated sound and complete principal pairing algorithm. We call this
calculus λµN . The calculus and algorithm double up as the theory needed behind a proof
assisstant for classical propositional logic.

• Provide a complete implementation of λµN , with Haskell-style syntax.

• Extend the work of [53], to define a classical, dependently typed calculus with dependent
functions, pairs and coproducts; ECCµ. We further expand this calculus to safely allow for
inductive data and record definitions.

• Define a bidirectional algorithm for ECCµ, and discuss considerations to make the user-level
language easier to work with.

• Provide a partial implementation of ECCµ. Due to the time constraints, we focused on
implementing the aspects of the bidirectional algorithm that are unique to the classical
calculi; in particular the checks for when we allow dependent types and control operators
to interact.

2



2 | Logic

Logic is the study of the structure of human reasoning achieved through examining the relationships
between formal statements [23, p. 5]. In this chapter we give an overview of propositional and
first order logic, and their respective natrual deduction systems and sequent calculi. We also
compare minimal, intuitionistic and classical logic.

2.1 Propositional Logic

Propositional logic is a familiar language for reasoning about statements, called atoms, that are
assumed to be either true or false.

Definition 2.1: Propositional Logic Syntax [23]

Given a countable set of propositional atoms, P , we defineW (P ), the set of all propositions
(from these atoms) by:

A,B ::= p Propositional Atom
| (A→ B) A implies B
| (A∧B) A and B
| (A∨B) A or B
| (¬A) not A

where p ∈ P .

We adopt the usual precedence rules of the connectives, and drop brackets where unambiguous
to do so. Bottom is taken to mean ‘false’, and is considered to be separate from the propositional
atoms (although it is sometimes also considered an atomic proposition).

The meaning behind this syntax, called the semantics, can be understood through truth tables,
which show the truth value of a compound term depending on its constituents. We use 1 to
represent truth, and 2 to represent falsity. One should observe that these values follow from the
meanings given to each symbol;

A B A→ B A∧B A∨B ¬A
1 1 1 1 1 0
1 0 0 0 1 0
0 1 1 0 1 1
0 0 1 0 0 1

Intuitively, this says that A∧B is true when A and B are true, A∨B is true when at least one
of A and B is true, and so on.

An important logical symbol we haven’t yet mentioned is bottom,⊥, which can have a different
meaning depending on its context. Some systems might use ⊥ to only represent contradiction;
when we have both A and ¬A, we can infer ⊥. In this case, ⊥ represents logical absurdity, from
which we can derive any proposition.

A system might also allow ⊥ to be used to encode negation, and thus write ¬A := A→⊥. This
means that reasoning about ‘¬’ in these systems is subsumed by reasoning about ‘→’ and ‘⊥’.
Note that in both these cases ⊥ is not treated like the other propositional atoms; it cannot appear
on the left of an arrow symbol, nor can we have propositions of the form A∧⊥,⊥∧A,A∨⊥ or
⊥∨A. Instead, ⊥ is purely meant to represent when we have logical conflict.

We can of course allow ⊥ to be a propositional atom in its own right, and are thus able to
reason about propositions like ⊥→⊥. In this case, ⊥ can be seen as an explicit representation of
falsity, not just conflict.

When looking at logical systems, we can employ syntactic restrictions on the propositions to
form logical fragments. This amounts to only using certain connectives. An example of this is ‘the

3



implicative fragment of propositional logic’, where we only consider propositions of the form ‘p’
and ‘A→ B’.

2.2 First Order Logic

First order logic lets us reason statements that refer to known (non-logical) objects. It introduces
the ideas of ‘for all’ and ‘there exists’; given by the symbols ∀ and ∃ respectively. The collection of
the objects we talk about is known as the domain of discourse, and we say these two new symbols
quantify over this domain. We write ∀x.A to mean for all objects in the domain of discourse, A
is a valid proposition. ∃x.A means there exists an object in the domain such that A is a valid
proposition.

The key difference between propositional and first order logic is that, in first order logic, the
propositions are defined with respect to variables x,y,z, . . . , which are quantified by the ∀ and ∃
symbols. Thus, the propositions are able to reason about these objects.

First order logic is the logic of mathematics, and we are able to express many familiar mathematical
ideas in first order logic. For example, ∀x.(even(x)→ isInteger(x/2)), states that, for any x, if x is
even, then it is divisible by two. What’s implicit here, is that x is an integer, and that we even
have the function ‘/’, or the constant 2. This is handled by having a known model that the logic
is able to reason about; a known set of function, propositional and constant symbols. We won’t
explore this further.

2.3 Natural Deduction

Natural deduction is a system for (syntactic) reasoning about propositions that is meant to closely
follow how a human would argue about a proof, whilst maintining formalism. It is defined in
terms of judgements and inference rules.

Originally defined by Gentzen [31], natural deduction is a formalised system for manipulation
of and reasoning about propositions. they are defined by inference rules over judgements. Judgements1

are of the form:
Γ ` A

Where Γ is a set of propositions, A is a proposition, and ` is syntactic entailment (derivability).
The judgement is read; "from the assumptions in Γ , we can derive A".

Definition 2.2 (Inference Rule).
Inference rules show how we are allowed to derive judgements from others. They are defined

by premises, which are known judgements; an inference line; and a conclusion, which is a judgement
said to be derived from the premises:

A1 · · · An
B

Where Ai are the premises, n an integer, and B the conclusion.

Natural deduction systems are defined by a countable/finite set of these rules. When comparing
two deduction systems X and Y , we say X is stronger than Y (and Y is weaker than X) if anything
derivable in Y is also derivable in X. If both systems can derive all the same propositions, we say
they are equivalent. Note that X being neither stronger nor weaker than Y does not necessarily
mean the two are equivalent2.

2.3.1 Logical Subsystems

We will compare different symbolic logics by their canonical inference rules. We focus on just
the fragment of propositional logic with implication and bottom. Each of the systems remain

1In the original presentation by Gentzen [31], natural deduction does not involve the sequent-style judgements we
present. However, the systems are equivalent and are defined by the same introduction/elimination rules - the sequent-
style system just makes it clearer which assumptions are open.

2The reader can convince themselves of this by considering two simple systems, where X can only derive ` A, and Y
can only derive ` B (and A , B).
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separate (and have the same distinctions) after adding the syntax and rules for ‘∨’ and ‘∧’ (but
not (lem)); we omit them from this discussion for clarity.

The inference rules for the different logics are presented in Figure 2.3, and we will discuss the
differences between these logics in the next few paragraphs.

Figure 2.3: A Summary of Natural Deduction Rules for Various Implicative Logics

(Ax)
Γ ,A ` A

Γ ,A ` B
(→ I)

Γ ` A→ B
Minimal

Γ ` A→ B Γ ` A (→ E)
Γ ` B

Γ ` ⊥ (⊥E)
Γ ` A Intuitionistic

Γ ,¬A ` ⊥
(RAA)

Γ ` A
Classical

We also write IPL for intuitionistic propositional logic, CPL for classical propositional logic,
and IPL→ for the implicative fragment of intuitionistic propositional logic.

(Ax) is the ‘axiom’ rule, which states that if you assume a proposition A, then you can certainly
derive A to be true. Implication is characterised by its introduction (→ I) and elimination (→ E).
(→ I) captures the meaning of implication well; if, assuming A, we can derive B then this can be
rephrased as A implies B. (→ E) explains how we can use an implication; if we know B follows
from A, and we also know A to be true, then B must also be true [23, p30].

(⊥E), also called ex falso quodlibet, as explained by van Dalen, expresses that from absurdity
we can derive anything [23, p30]. (RAA), reductio ad absurdum, reifies proof by contradiction (PbC):
if, assuming ¬A, we can derive absurdity, or a contradiction, then it must be the case that A holds
[23, p30].

Minimal Logic

Definition 2.4: Minimal Logic [3]

Minimal logic is defined by the rules:

(Ax)
Γ ,A ` A

Γ ,A ` B
(→ I)

Γ ` A→ B
Γ ` A→ B Γ ` A (→ E)

Γ ` B

Importantly, in minimal logic there are no rules specific to ⊥. In fact, any globally fixed atom
could be used in place of ⊥ (including one that is true, or allowed to appear on the left of arrows)
when used to define negation [3, p4].

Intuitionistic Logic

Intuitionistic logic (in the implicative fragment) is found by adding the rule (⊥E) to minimal
logic. It is based in constructivism, as it is based on Brouwer’s principle that the truth of a
proposition is given by providing computable evidence [36]. In intuitionism, then, a proof of
A∨B is constructed from a proof of either A or B. There are no indirect proofs; so ` ¬¬A doesn’t
necessarily entail A. Thus, one more often talks about ‘provability’ of a proposition than its
truth/falsity.

Although we won’t explore this further, it is worth noting that intuitionistic logic cannot
be understood through truth table semantics, as the tables fundamentally rely on the idea of
propositions being true or false.
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The constructivist philosophy is also seen in first order logic, where an existential must provide
a witness (an explicit ‘example’ that proves the statement). For example; in proving ∃x.A, one
must find (and construct) such an x; it is not enough to simply show ¬∀x.¬A.

Definition 2.5: Intuitionistic Logic [3]

The inference rules for intuitionistic logic are given by adding the following rule to those
of minimal logic (as defined in 2.4):

Γ ` ⊥ (⊥E)
Γ ` A

Classical Logic

Classical logic is based on the more traditional view of propositions as being either true or false;
so for any A, either A or ¬A is true. The semantics of classical propositional logic can be precisely
given by the truth tables discussed earlier in this chapter.

When added to intuitionistic logic, (RAA) gives us classical logic. This is because proof by
contradiction is a classical notion; showing that ¬A leads to absurdity is the same as proving A,
because we must have either ¬A or A.

Subtly different to (RAA) is the inference rule (¬¬E), double negation elimination. (¬¬E) states
that, a derivation of ¬¬A emits a derivation of A. Again, this follows from the truth table
semantics; if we know ¬¬A is true, then we certainly can’t have ¬A be true, thus A is true.

Although (RAA) and (¬¬E) may seem similar, they are in fact not equivalent [3]. When added
to minimal logic, (¬¬E) still gives classical logic; but (RAA) does not. (RAA) added to minimal
logic is known as minimal classical logic [3], which is strictly weaker than classical logic, stronger
than minimal logic, and neither stronger nor weaker than intuitionistic logic (but the two are not
equivalent). Further discussion on intermediate logics (those with proving power between that
of intuitionistic and classical logic) can be found in [3].

Definition 2.6: Classical Logic [3]

Classical logic is obtained by extending intuitionistic logic (as in 2.5) with the either of the
rules:

Γ ,¬A ` ⊥
(RAA)

Γ ` A
or Γ ` ¬¬A (¬¬E)

Γ ` A

2.3.2 Conjunction and Disjunction

The logical connectives for conjunction, ‘∧’, and distinction, ‘∨’, have standard inference rules
that can be added to any of the above logics. The logics thus created maintain similar distinctions
in the presence of these rules. We will give the intuition behind their inference rules, which
follow naturally from their meaning.

Conjunction For (∧I), to prove A∧B, we must have first proved both A and B. Conversely, if we
already know A∧ B, then we know that this proposition was constructed from a proof of A and
B, so we can ask for these proofs individually, giving us the (∧Ei) rules.

Definition 2.7: Conjunction [23, p29]

The inference rules for conjunction are:

Γ ` A Γ ` B (∧I)
Γ ` A∧B

Γ ` A∧B (∧E1)
Γ ` A

Γ ` A∧B (∧E2)
Γ ` B

Disjunction If we have proved A, then we easily know that A ∨ B and B ∨ A are true for any
proposition B; this idea is encapsulated by the (∨Ii) rules. The (∨E) rule is perhaps less obvious,
as we have a formula C that seems to have nothing to do with the formula A∨ B. We call C the
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motive [48] for the elimination of A∨ B. The idea is that, if we can prove C given either A or B,
and we know at least one of A or B is true, then we can prove C.

Definition 2.8: Disjunction [23, p47]

The inference rules for disjunction are:

Γ ` A (∨I1)
Γ ` A∨B

Γ ` A (∨I2)
Γ ` B∨A

Γ ` A∨B Γ ` A→ C Γ ` B→ C (∨E)
Γ ` C

There is a further rule for disjunction that only holds in classical logic; the law of the excluded
middle, (lem). It encodes the classical point of view that propositions are either true or false, that
is, there is no ‘middle’ truth value.

Definition 2.9: Law of the Excluded Middle [3, p6]

(lem)
Γ ` A∨¬A

Adding this rule to intuitionistic logic (with disjunction and conjunction), gives classical logic.

2.3.3 First Order Natural Deduction

Just as with the inference rules for conjunction and disjunction, the inference rules for the quantifiers
are standard, and when added to the different logical systems, the resulting systems maintain
similar distinctions. It’s important that we consider ∀ and ∃ to both be native to the syntax; in
[23], ∃x.A(x) is defined as ¬∀x.¬A(x). This is in fact only provable in first order classical logic.

The notation A(x) means A is a proposition with a free variable x; A[t/x] means to substitute
every (free) occurrence of x in A by t.

For All The intuition behind (∀I) is well explained by van Dalen [23, p86]3; ‘if an arbitrary
object x has the property A, then every object has the property A’. The inversion of this idea
explains (∀E); if we know that for every object x, we have A(x), we can consider A(t) for an
arbitrary object t.

Definition 2.10: For All [23, p93]

Γ ` A(x)
(∀I)

Γ ` ∀x.A(x)
Γ ` ∀x.A(x)

(∀E)
Γ ` A[t/x]

Where x doesn’t occur free in any proposition in Γ .

Existence If we can find an object x such that A(x) is true, then we can say ∃x.A(x); this explains
the rule (∃I). (∃E) is similar to (∨E) in that it needs a motive, B. The right hand premise says that,
if we assume A(x), with the free variable x, to be true, then we can derive B. As the left premise
has shown we can find such an x, we can thus conclude B.

3For consistency with the inference rules presented we use the propositional symbolA; in the original quote, van Dalen
uses the symbol ϕ.
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Definition 2.11: Existential [23, p93]

Γ ` A[t/x]
(∃I)

Γ ` ∃x.A(x)
Γ ` ∃x.A(x) Γ ,A(x) ` B

(∃E)
Γ ` B

2.4 Sequent Calculus

The sequent calculi [57] are an alternative approach for systematic reasoning. Gentzen [31]
originally introduced the sequent calculi as a means to prove certain results about natural deduction
and proof reductions, but they are a valid logical formalism in their own right. Where natural
deduction rules are about the introduction and elimination of connectives in the conclusions, the
sequent calculus rules concern only the introduction of connectives in both the premises and
conclusions.

Unlike natural deduction, sequent calculi allow for multiple conclusions. This means we
reason about judgments of the form:

A1, . . . ,An ` B1, . . . ,Bm

Where

• A1, . . . ,An are the antecedents; representing the conjuction of assumptions A1 through An -
i.e. that all of A1, . . . ,An are assumed to be true.

• B1, . . . ,Bm are the succedents or conclusions; representing the disjunction of conclusions - i.e.
that at least one of B1, . . . ,Bm must be true. These can be seen as the ‘open cases’ of the
deduction.

2.4.1 Structural Rules

Sequent Calculi also have explicit structural rules that describe how the structural properties
of the sequents themselves relate to their meaning [28]. These involve: weakening, where we
make an extra assumption (WL) or allow an extra conclusion (WR); contraction, where, if we have
assumed the same proposition twice, it has the same meaning as assuming it only once (CL),
and similar for deriving a proposition twice (CR); and exchanging, concerning the ordering of the
antecedents and succedents within an individual sequent. The exchange rules are not needed if
we consider antecedents and succedents to be finite multisets instead of ordered lists [57]. We
take this approach moving forward.

2.4.2 LK and LJ

Definition 2.12 (LK, The Classical Sequent Calculus [31, 28]).
The inference rules for the classical sequent calculus can be found in Figure 2.14.

We explain some of the new inference rules.

Top and Bottom

In the sequent calculi, we wish to reason explicitly about both truth, >, and falsity, ⊥. What
we can know for sure about >, is that it is always true, so it is always a valid conclusion – this
is represented by the rule (>R). As for the (⊥L), we know that if we assume falsity, we have
absurdity and we can then certainly derive anything.

Cut

The Cut rule lets you prove an intermediate proposition once, and then assume that proposition
in the derivation of the main proof [28]. This saves us from having to rewrite a proof for the
intermediate proposition A each time we wish to use it in the proof. This rule represents a very
common idea in proofs; that of a lemma. For example, in mathematics, we might wish to use the
Pythagoras Theorem to prove something about some shapes, and apply the theorem many times
– it’d be very annoying to have to write the proof for the theorem each time we wish to use it.
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Negation

The derived rules (¬R) and (¬L) can be found as follows (by using the definition of ¬A := A→⊥);

(¬R) can be derived: (¬L) is derived by:
Γ ,A ` ∆

(WR)
Γ ,A ` ⊥,∆

(→ R)
Γ ` ¬A,∆

Γ ` A,∆ (⊥L)⊥ `∅
(→ L)

Γ ,¬A ` ∆

Definition 2.13 (LJ, The Intuitionistic Sequent Calculus [31]).
The sequent calculus for intuitionistic logic can be obtained from LK by restricting all rules

to only allow one succedent. As argued in [57], this can be relaxed to only restricting (→ R) to
single succedents.

Figure 2.14: The Classical Sequent Calculus, LK [28]

Structural Rules

Γ ,A,A ` ∆
(CL)

Γ ,A ` ∆
Γ ` ∆,A,A

(CR)
Γ ` ∆,A

Γ ,A ` ∆
(WL)

Γ ,A,B ` ∆
Γ ` ∆,A

(WR)
Γ ` ∆,A,B

Core Rules

(Ax)
A ` A

Γ ` A,∆ Γ ′ ,A ` ∆′
(Cut)

Γ ,Γ ′ ` ∆,∆′

Logical Rules

(⊥L)
Γ ,⊥ ` ∆ (>R)

Γ ` >,∆

Γ ` A,∆ Γ ′ ,B ` ∆′
(→ L)

Γ ,Γ ′ ,A→ B ` ∆,∆′
Γ ,A ` B,∆

(→ R)
Γ ` A→ B,∆

Γ ` A,∆ Γ ′ ` B,∆′
(∧R)

Γ ,Γ ′ ` A∧B,∆,∆′
Γ ,A ` ∆

(∧L1)
Γ ,A∧B ` ∆

Γ ,B ` ∆
(∧L2)

Γ ,A∧B ` ∆

Γ ,A ` ∆ Γ ′ ,B ` ∆′
(∨L)

Γ ,Γ ′ ,A∨B ` ∆,∆′
Γ ` A,∆

(∨R1)
Γ ` A∧B,∆

Γ ` B,∆
(∨R2)

Γ ` A∨B,∆

Derived Rules

Γ ` A,∆
(¬L)

Γ ,¬A ` ∆
Γ ,A ` ∆

(¬R)
Γ ` ¬A,∆
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3 | λ-Calculus

In this chapter we give a brief overview of the lambda calculus with simple types, and the
definitions we’ll need to compare different calculi.

The λ-Calculus is an abstract interpretation of computation, originally defined by Alonzo
Church [18]. Being concise, but Turing-Complete [73], it is a great calculus in which to reason
about abstract machines. This exposition of the λ-Calculus is based on the lecture notes from the
C382 (now comp60023) Type Systems for Programming Languages course taught at the Department
of Computing, Imperial College London [8].

3.1 The Untyped λ-Calculus

Definition 3.1: λ-terms [8]

For a set of valid variables x,y,z, . . ., we define λ-terms by:

M,N ::= x (variable)

| (λx.M) (abstraction)

| (MN ) (application)

As usual, we write λxy.M to mean λx.(λy.M), and we drop brackets when unambiguous to do
so, with application being left associative.

Variables can be free or bound in a λ-term [8]. A variable x is bound in a term N if x appears in
a subterm of λx.M, where λx.M is a subterm of N . If a variable x appears in a term not under a
binding, it is said to be free. Note that a variable can be both free and bound at the same time in
a term, for example in (x)(λx.x).

Definition 3.2: Term Substitution [8]

M[N/x], the substitution of a variable x by a term N in a term M, is defined by recursion
on the structure of M:

x[N/x] =N

y[N/x] = y y , x

(λy.M)[N/x] = λy.(M[N/x])

(LM)[N/x] = (L[N/x])(M[L/x])

With x not bound in M.

Variable capture occurs in a substitutionM[N/x], whenN contains a free variable that is bound
in a scope x is in [8]. For ease of reasoning about λ-terms, we adopt Barendregt’s Convention [11], in
which we assume that bound and free variables are always different (and re-labelling of variables
is done implicitly when needed).

β-reduction defines the computation of the λ-calculus; substituting a bound variable for an
argument.

Definition 3.3: β-reduction [8]

We introduce:

1. The single step β-reduction,→β , is defined by:

(λx.M)N →β M[N/x]
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along with the ‘contextual closure’ rules,

M→β N =⇒


λx.M→β λx.N
LM→β LN
ML→β NL

2. The reflexive, transitive closure of β-reduction is defined as→∗β , satisfying:

M→β N =⇒ M→∗β N
M −→∗β M

M→∗β N & N →∗β L =⇒ M→∗β L

3. =∗β is defined by adding symmetry to →∗β , i.e. M =∗β N =⇒ N =∗β M and M →∗β
N =⇒ M =∗β N . This relation can be seen as ‘executing the same function’.

A useful property is that of confluence,

Definition 3.4 (Confluence [67, 40]).

1. M→∗β N and M→∗β P =⇒ there is a term Q such that N →∗β Q and P →∗β Q.

2. M =∗β N and M→∗β P =⇒ there is a term Q such that P →∗β Q and N →∗β Q

This is also known as the Church-Rosser Property.

The values of the λ-calculus are the terms of the form x or λx.M [65, p127], and we often write
V to denote a value.

Confluence expresses that different reductions from the same original term can eventually be
‘joined’ [8, p6]. We call terms of the form (λx.M)N redexes [8, p5]. A term is said to be in normal
form when it contains no redexes [8, p7].

3.2 The Simply Typed λ-Calculus

The simply typed λ-calculus (STLC), also known as the Curry type system [12], introduces types
to the λ-calculus. The typing system precisely follows the syntactic structure of λ-terms, and
provides great insight into how terms operate and interact. For all type systems moving forward,
we assume there is a countable set of atomic types, which is ranged over by ϕ.

Definition 3.5: Curry Types [12, 8]

We define the set of Curry types to be:

A,B ::= ϕ | A→ B

A→ B represents functions that take a argument of type A and return a function of type
B. M : A means that a term M has type A or, alternatively, M inhabits the type A. M is
said to be the subject, and A the predicate of the statement M : A.

A context is a (partial) mapping of variables to types, of the form x : A, that we call type
assignments, or statements [8, p11]. We write Γ ,x : A to mean Γ ∪{x : A}, with the restriction that if
Γ already contains an assignment for x, then that assignment must also be x : A.

Derivations of type assigments are presented with judgements of the form, Γ ` M : A, that
read; ‘from the context Γ , we can derive that M has type A’.
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Definition 3.6: Curry Type Assignment [12, 8]

(Ax)
Γ ,x : A ` x : A

Γ ,x : A `M : B
(→ I)

Γ ` λx.M : A→ B
Γ `M : A→ B Γ `N : A (→ E)

Γ `MN : B

If we reduce a term, we expect it to have the same type. In particular we would like (λx.M)N
and M[N/x] to have the same types. This is property is known as subject reduction:

Theorem 3.7 (Subject Reduction). [8, p12] Γ `M : A and M→∗β N =⇒ Γ `N : A

3.3 Principal Types

For a computer to be able to find the type of a particular term M, we need to encode the type
system into an algorithm. As (infinitely) many types can be given to any typeable term, it makes
sense to try and find a ‘most general’ type to give M [8, p14]; that is, a type A subsumes all
other types that can be assigned to the given term. If the term contains free variables, we would
also like to know the most general types that those variables would need; which gives us a most
general context Γ allowing for Γ `M : A (where Γ contains exactly the free variables of M). This
is known as the ‘principal pair’ of M; a pair containing the type A and context Γ [8, p14].

To be able to relate different types to each other, we will have to be able to substitute type
variables by types, using type substitutions.

Definition 3.8: Type Substitution [8, p14]

A type substitution, S, is a partial mapping from type variables to types, which is defined
on only finitely many type variables. We write

ϕ 7→ A

to represent the substitution that, when applied to ϕ, returns the type A.
The substitution is defined by recursion on the structure of types;

(ϕ 7→ C) ϕ = C
(ϕ 7→ C) ψ = ψ, if ψ , ϕ
(ϕ 7→ C) (A→ B) = ((ϕ 7→ C)A)→ ((ϕ 7→ C)B)

Substitutions can be applied to contexts by SΓ = {x : SA | x : A ∈ Γ }, and a principal pair by
S〈Γ ,A〉 = 〈SΓ ,SA〉.

If there is a substitution S such that SA = B, we say B is an instance of A [8, p14].

3.3.1 Unification

Unification of types, as defined by Robinson [66], is a procedure that takes as input two types,
and returns a substitution that maps both to their smallest common instance [8, p15].

Definition 3.9: Robinson’s Unification Algorithm [66][8, p15]

unify ϕ ψ = ϕ 7→ ψ

unify ϕ B =
{
ϕ 7→ B if ϕ doesn’t occur in B
error otherwise

unify A ϕ = unify ϕ A
unify A→ B C→D = S2 ◦ S1

where
S1 = unify A B
S2 = unify (S1C) (S1D)
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The following proposition shows that Robinson’s algorithm does find a common instance that
is, in a sense, ‘smallest’ [8, p15].

Proposition 3.10: Unification Theorem [66, p33][8, p15]

For any types A and B, if there is a unifying substitution S1 such that S1A = S1B, then there
are substitutions S2 and S3 such that

S2 = unify A B
S1 = S3 ◦ S2

Definition 3.11 (Most General Unifier, Extend).
For S2 and S3 defined as in 3.10,

• S2 is called the most general unifier of A and B [66, p33].

• We say that S3 extends S2 [8, p16].

These definitions allow us to rephrase 3.10 as: ‘any unifying substitution of two types must
extend their most general unifier’. Proposition 3.10 will be a very helpful fact to use during our
proofs of soundness and completeness for the principal pairing algorithms in Chapter 6.

3.3.2 Principal Type

Definition 3.12: Principal Pair, Principal Type [81]

For a term M, the principal paira of M is the pair of a context and type, 〈Γ ,A〉 such that:

(i) Γ `M : A

(ii) For any Γ ′ ,A satisfying Γ ′ `M : A′ , there exists a substitution S such that (S Γ ) ⊆ Γ ′

and (SA) = A′

A is called the principal type of Mb.

aThis is sometimes also called the principal typing, but is distinct from the principal type. We call it the
principal pair for clarity.

bThere are various similar but distinct definitions of the principal type of a term; some require the term be
closed[12, p71], some require it be defined with respect to an environment[24, p43]. The definition given here
subsumes both.

3.4 The Curry-Howard Isomorphism

The Curry-Howard Isomorphism [41] is the observation of the correspondence between the typed
λ-calculus and logic. More precisely, any derivation in IPL→ corresponds to a type assigment
of some λ-term. The conclusion of the derivation corresponds with the type, the proof itself
corresponds to the λ-term. This is summarised succinctly by the slogans "propositions as types"
and "proofs as programs" [77].

Comparing the inference rules side by side, it is very easy to see the correspondence;

Comparing STLC and IPL→

(Ax)
Γ ,A ` A (Ax)

Γ ,x : A ` x : A

Γ ,A ` B
(→ I)

Γ ` A→ B
Γ ,x : A `M : B

(→ I)
Γ ` λx.M : A→ B

Γ ` A→ B Γ ` A (→ E)
Γ ` B

Γ `M : A→ B Γ `N : A (→ E)
Γ `MN : B
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Here it is easy to see that assuming a proposition A amounts to ‘labelling’ it with the variable x
[61]. The key is how implication corresponds with functions; an implication A→ B is a procedure
that, when supplied a proof of A, it gives a proof of B. A function A→ B is a procedure that, when
supplied a term of type A, returns a term of type B [77].

λ-terms can be seen as an encoding of proofs of IPL→, so we can call the λ-calculus a proof-term
syntax for IPL→.

3.5 Proof-Term Syntax for Intuitionistic Propositional Logic

Currently our calculus lets us only reason about implication; to be able to reason about conjuctions
and disjunctions, we must extend our syntax. We follow the propositional section of intuitionistic
type theory outlined by [46, 58].

Definition 3.13: Natural Deduction for IPL[69, p27]

(Ax)
Γ ,A ` A

Γ ` ⊥ (⊥E)
Γ ` A

Γ ,A ` B
(→ I)

Γ ` A→ B
Γ ` A→ B Γ ` A (→ E)

Γ ` B

Γ ` A Γ ` B (∧I)
Γ ` A∧B

Γ ` A∧B (∧E1)
Γ ` A

Γ ` A∧B (∧E2)
Γ ` B

Γ ` A (∨I1)
Γ ` A∨B

Γ ` A (∨I2)
Γ ` B∨A

Γ ` A∨B Γ ,` A→ C Γ ,` B→ C
(∨E)

Γ ` C

3.5.1 Inhabiting the Logic with Syntax

This explanation is thanks to Wadler [77].

Conjunction [77, p4] We relate conjunction A∧B with the product type A×B. A proof of A∧B
is formed from a proof of A and B, so a term of type A×B should consist of a term of type A and
a term of type B, that is, a pair of the two terms.

Thus we add pairs: 〈M,N 〉, and the ability to select the left or right element in a pair by π1(M)
and π2(M), respectively, (which also inhabits the (∧Ei) rules) with reduction rules;

π1〈M,N 〉 →M

π2〈M,N 〉 →N

Disjunction [77, p4] We relate the proposition A∨B with the (disjoint) sum type A+B, which
contains elements of either type A or type B. A proof of A∨B is formed from either a proof of A
or a proof of B, so a term of type A+B should be formed from from a term of type A or a term of
type B; and tagging the term to indicate if it was of the left or right type. For (∨E), we must have
a syntax that encodes that we have derived A or B, and in both cases, C can be derived.

Thus we add injections: in1(M) and in2(M), that ‘inject’ M into the left or right of the sum,
respectively. For (∨E), we express that in both cases of A or B C can be derived, by the syntax
case(M,N,L) (where N handles the left case, L the right) , with reductions;

case(in1(M),N ,L)→NM

case(in2(M),N ,L)→ LM
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Ex Falso From absurdity/falsum, we can derive anything. We should have a marker, ε that notes
that A was derived from falsity.

3.5.2 STLC+× for IPL

Definition 3.14: λ-Calculus for IPL[8, p4, 48]

We define the types of λ-calculus with sums and products by:

A,B ::=⊥ | ϕ | A→ B | A×B | A+B

We define the terms by the grammar:

M,N,L ::= x | λx.M | MN
| 〈M,N 〉 | πi(M)
| case(M,N,L) | ini(M)
| ε(M)

Definition 3.15: Type Assignments for the λ-Calculus with sums and products [69, chp4]

(Ax)
Γ ,x : A ` x : A

Γ `M :⊥ (⊥E)
Γ ` ε(M) : A

Γ ,x : A `M : B
(→ I)

Γ ` λx.M : A→ B
Γ `M : A→ B Γ `N : A (→ E)

Γ `MN : B

Γ `M : A Γ `N : B (×I)
Γ ` 〈M,N 〉 : A×B

Γ `M : A×B (×E1)
Γ ` π1(M) : A

Γ `M : A×B (×E2)
Γ ` π2(M) : B

Γ `M : A (+I1)
Γ ` in1(M) : A+B

Γ `M : A (+I2)
Γ ` in2(M) : B+A

Γ `M : A+B Γ ,`N : A→ C Γ ,` L : B→ C
(+E)

Γ ` case(M,N,L) : C

Unit Some logics also have truth, >, as an introducable formula, with a rule;

(>I)
Γ ` >

As we know > is always true, it has a trivial proof; 〈〉 (the empty tuple). We represent the type
of this proof by either; 〈〉 :> or 〈〉 : 1, with a typing rule [75, p436];

(>I)
Γ ` 〈〉 :>

Computationally, it relates to the ‘void’ type; as it has only one inhabitant. Of course logically,
it might not be interesting to assert truth, but computationally, we can use the trivial proof to
construct more interesting terms, much in the same way set theory uses the empty set to construct
many more interesting sets.
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4 | λµ-Calculus

For a while, it was believed that computation would only correspond to intuitionistic logic, due
to its constructive nature, and not classical logic.

More recently, however, computational interpretations of classical logic have been found. The
link between classical logic and computation was found in control operators [33, 61]. Control
operators allow terms to manipulate their evaluation context; for an abstract machine this means
control over the execution stack (and program state). Felleisen’s λC [30] calculus was devised to
formalise some of the control operators of the Scheme [56] language, like the call/cc construct.
Griffin observed [33] that the new term constructor C could be typed by ((A→ ⊥)→ ⊥)→ A –
this was the first time a computational meaning had been given to classical logic; opening a new
area of research into calculi with control.

4.1 Evaluation Contexts

The evaluation context of a term amounts to a combination of its arguments and the function
being applied to the term (and the function being applied that one, and so on). This can also be
seen as the state of the execution stack when evaluating at the term.

In a term MN1 . . .Nn, the evaluation context of M is the term with a hole •N1 . . .Nn. In a
term V1(V2(. . .Vn(MN1 . . .Nn)) . . . ), where each Vi is a value, the evaluation context of M is
V1(V2(. . .Vn(•N1 . . .Nn)) . . . ). We can define this formally;

Definition 4.1: Evaluation Context [27]

We define evaluation contexts by the grammar:

C ::= • | CM | VC

Where • represents a ‘hole’; where the context is waiting for a function to be applied. We
denote the insertion of M into the hole of C by C{M}.

4.2 λµ-Terms

With the exposition of contexts in mind, we now present the λµ-calculus due to Parigot [61];

Definition 4.2: λµ-Calculus Syntax [61]

With variables defined by the Latin symbols, x,y, . . . ; and covariables, or names, by the Greek
symbols α,β, . . . ; we define λµ-terms by:

M ::= x | λx.M |MN | µα.[β]M

We often might discuss also the pseudo terms µα.M and [β]M, but note that all well-
formed terms must be as above. We say a term M in [α]M is labelled/named by α.

In the term µα.M, the name α is bound over M. The occurrences of a name α are when it
appears in the square brackets, [α]N . We say a name α is free in a term M if M contains a
subterm of the form [α]N , and α is not bound in this subterm.
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Definition 4.3: λµ Values [5, p9]

The values of the λµ-calculus are defined by

V ::= x | λx.M | µα.[β]V

The idea behind a term µα.M is that it passes, or redirects, its arguments to the terms labelled
by α. So ifM has a subterms of the form [α]N , then, when applied to an argument P , (µα.M)P will
evaluate by sending P to be an argument of each α-named subterm. In this sense, each subterm
[α]N is substituted by [α]NP . This idea is formalised by the µ-reduction:

Definition 4.4: λµ-Calculus Reductions [5, 61]

The reduction rules for the λµ-calculus are defined as:

logical (β) : (λx.M)N → (M)[N/x]
structural (µ) : (µα.M)N → µα.M

[
[α](•N )/[α] •

]
Where M

[
[α](•N )/[α] •

]
means to replace every subterm of M with the form [α]L by the

term [α](LN ). This is called structural substitution.
We extend the notions of free and bound variables to covariables, using µ as the binder for
covariables, and [α] for their occurrences.
There are two other rules that can be introduced to the calculus, and they are essentially
trivial under the computational interpretation;

renaming (µn) : [β](µα.M) → M[α/β]
erasing (ηµ) : µα.[α]M → M if α not free in M.

With these reductions, the λµ-calculus is known to be confluent [61, 5]. Notice that terms to
the left of a µ term, e.g. N in N (µα.M) are not passed to the α-named subterms. The calculus can
be extended with another operator, or an extra ‘left‘ reduction rule for µ [25, 62], that can handle
the left terms. These calculi do not enjoy conluence, so deterministic evaluation can be gained by
choosing a particular evaluation strategy, like call-by-value or call-by-name, and modifying the
reduction rules to reflect this strategy.

If we restrict our context syntax introduced in 4.1 to C := • | CM, we could also write µ-
reduction as;

C{µα.M} → µα.M
[
[α](C{N })/[α]N

]
,

meaning for every subterm ofM of the form [α]N , we replaceN by itself inserted into the context
C; C{N }. In Section 5.3, we will see that viewing µ as able to manipulate its context allows us to
use µ and [·] to understand control operators from other calculi.

Example 4.2.1. Here is a simple term that shows the most basic way the context can be passed
to a subterm;

(µα.[α]M)PQ→µ ()µα.[α]MP )Q→µ µα.[α]MPQ

A term that uses the context twice;(
µα.[α]

(
(µδ.[α]x)y

))
M1 . . .Mn→∗ µα.[α]

(
(µδ.[α](x M1 . . .Mn))y M1 . . .Mn

)

Example 4.2.2. [61] Consider the term;

P := λy.µα.[α]yλx.µδ.[α]x
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When applied to M,N1, . . . ,Nn, P reduces as follows;(
λy.µα.[α](yλx.µδ.[α]x)

)
MN1 . . .Nn →

(
µα.[α]M(λx.µδ.[α]x)

)
N1 . . .Nn

→
(
µα.[α]

(
M (λx.µδ.[α]x N1)N1

))
N2 . . .Nn

→∗ µα.[α]
((
M (λx.µδ.[α]x N1 . . .Nn)

)
N1 . . .Nn

)
Where δ is not free in M or any Ni . P has similar behaviour to the call/cc operator of

Scheme [61].
When M is being evaluated, its first argument is Q := λx.µδ.[α](x N1 . . .Nn), and it is then

given the other arguments N1 . . .Nn. Q as an argument to M effectively gives M control over
the context of the original term:

Noting that δ doesn’t occur free in M, thus no subterms of M are named by δ; at any
point, M can feed an argument to Q, which causes the current context to be redirected
by µδ, effectively throwing away the current context.

M is then able to interact with the original context •N1 . . .Nn.

As δ doesn’t occur in any subterm, the context it appears in is essentially thrown away. Thus
Q is said to abort from its current context.

4.3 Type Assignments for the λµ-Calculus

4.3.1 Types and Contexts

Of course, for a logical correspondence, we’ll need to be able to assign types to the calculus. We
keep the same set of simple types, A,B ::= ϕ | A→ B.

The key idea behind the typing is in the intuition behind the µ reductions. Consider a term
µα.M containing a subterm [α]N . When applied to an argument P , µα.M will reduce by inserting
P after N ; i.e. [α]N → [α]NP . This means, if N : A→ B→ C, that we must have P : A, else the
subterm NP would be ill-typed. Applying to a second argumentQ, through similar reasoning we
can see that we must have Q : B. As µα.M is a term that we want to be well typed when applying
to P and Q, its type should match that of N , thus we get µα.M : A→ B→ C.

More generally, a term µα.M has the same type as the subterms labelled by [α]. This is well
described by de Groote [27]1,

“. . . in a λµ-term µα.M of type A→ B, only the subterms named by α are really of type
A→ B; therefore, when such a term is applied to an argument, this argument must be
passed over to the subterms named by α.”

4.3.2 Type Assignments

As variables and covariables represent different sorts of objects, we split their typings into contexts,
Γ , and co-contexts/conclusions, ∆.

Our typing judgements are of the form Γ `M : A | ∆, whereM : A is called the active conclusion.

Definition 4.5: Type Assignments for λµ-Calculus[61, 70]

The types of the λµ-calculus are defined as;

A,B ::=⊥ | ϕ | A→ B (A ,⊥)

With type assignments:
(Ax)

Γ ,x : A ` x : A | ∆

Γ ,x : A `M : B | ∆
(→ I)

Γ ` λx.M : A→ B | ∆
Γ `M : A→ B | ∆ Γ `N : A | ∆

(→ E)
Γ `MN : B | ∆

1As the author orignally found referenced in [7, p.34]
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Γ `M : A | ∆
(name)

Γ ` [α]M :⊥ | α : A,∆
Γ `M :⊥ | α : A,∆

(µ)
Γ ` µα.M : A | ∆

This presentation is quite different from Parigot’s original presentation [61]. The original
system is ‘multiplicative’ in its contexts and co-contexts, which means that contractions and
weakenings of the context are needed. Notably, the (Ax) rule is of the form x : A ` x : A, which
means when typing the closed term λx.λy.y, as x will appear in the context when typing λy.y,
we must allow the weakening rule for the context (to remove x from the context). The presence
of the structural rules aren’t immediately obvious, as they are left implicit as a comment, rather
than explicit rules of the type system [61]. To avoid this complication, we allow the ‘shared’ (co-
)contexts that we have used throughout this report, and allow open assumptions and conclusions
in the (Ax) rule (like in STLC).

In Parigot’s original type assignments for λµ, ⊥ was not included in the set of types [61].
Instead, the pseudo-terms of the form [α]M, called commands [5], had no active type; which in
type derivations would be written Γ ` [α]M | ∆. This means we are not able to have a term with
a negated type, as there is no ¬ symbol for types, nor can we use the encoding A→⊥. By using
our definition of types in 4.5, which makes ⊥ a type that is only allowed to appear on the right of
arrows, we are able to represent negation and (¬I) – but not (¬E), as will be explained in the next
few paragraphs.

To allow for reasoning about negation and absurdity, Parigot proposes to extend the definition
of types with ⊥ [61], not allowing it to appear on the left of arrows; negation is then represented
by A → ⊥. It is not clear in their work if we can type variables by ⊥, for example if we allow
x : ⊥ ` x : ⊥ – we proceed with this discussion assuming this is not the case. In this sense, ⊥ is
interpreted as conflict. Then, if we can derive a term to have type ⊥, we have specific rules when
activating and passivating said term – that the covariables with type ⊥ are not mentioned in the
co-context [61];

Γ `M :⊥ | ∆ γ < ∆
(name⊥)

Γ ` [γ]M :⊥ | ∆
Γ `M :⊥ | ∆ δ < ∆

(µ⊥)
Γ ` µδ.M :⊥ | ∆

We see this as an unsatisfactory solution, as the type system loses its explicitness. If we
consider a term M conatining a subterm [γ]N such that N : ⊥ and γ is free in M, this solution
would let us type M : A, by ∅ `M : A | ∅; which would make it appear that M has no free names.

Instead of having ⊥ and these two inference rules, Parigot explains we can equivalently add
negation of types and inference rules for (¬I) and (¬E)) [61];

Γ ,x : A `M | ∆
(¬I)

Γ ` λx.M : ¬A | ∆
Γ `M : ¬A | ∆ Γ `N : A | ∆

(¬E)
Γ ` [γ]MN | ∆

However, this shares the same problem outlined above, as γ again is not mentioned in the conclusions.
We will revisit this problem in Section 4.4.2.

4.4 A Proof-Term Syntax for Classical Propositional Logic

The rule names of the type assignments might hint at a natural deduction correspondence, but
the multiple conclusions suggest a sequent calculus. In fact, it corresponds with classical natural
deduction, devised by Parigot in their development of λµ [61], which is a ‘mixture’ [9] between
the two.

We reason about judgements of the form Γ ` A | ∆, where Γ is a set of propositions, called open
assumptions (or premises), ∆ a set of propositions, called open conclusions (or succedents), and
A the active conclusion. As in the sequent calculus, we assume all the propositions of Γ are true,
and that at least one of the propositions in α,∆ is derivable given Γ .

Definition 4.6: Classical Natural Deduction [61]

(Ax)
Γ ,A ` A | ∆

Γ ,A ` B | ∆
(→ I)

Γ ` A→ B | ∆
Γ ` A→ B | ∆ Γ ′ ` A | ∆′

(→ E)
Γ ,Γ ′ ` B | ∆
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Note it is easy to define rules for (¬I) and (¬E) by taking ¬A = A→⊥.

Definition 4.7: Structural Rules [61]

There are implicit structural rules that one can passivate and activate conclusions at any
time.

Γ ` A | ∆
(passivate)

Γ ` ⊥ | A,∆
Γ ` ⊥ | A,∆

(activate)
Γ ` A | ∆

We also have the (WL), (WR), (CL), (CR) rules from the sequent calculus, where the (WR)
rule must weaken from an active ⊥.

As this deductive system is essentially IPL→ with multiple conclusions, we can see that the
extra strength for classical reasoning must come from allowing these multiple conclusions and
their manipulation (as we know (P C) is not derivable in just IPL→). The µ and [·] operators
correspond with these structural rules; activation and passivation.

4.4.1 Translating Derivations

Example 4.4.1. [61] We show a derivation of Pierce’s Law, ((A→ B)→ A)→ A. This implies
that our calculus is at least as strong as minimal classical logic [3, 2].

(A→ B)→ A ` (A→ B)→ A

A ` A (passivate)
A ` ⊥ | A

(WR)
A ` B | A

(→ I)
` A→ B | A

(→ E)
(A→ B)→ A ` A | A

(CR)
(A→ B)→ A ` A

(→ I)
` ((A→ B)→ A)→ A

We can just follow the rule labels to see how to inhabit this proposition with a term:

y : (A→ B)→ A ` y : (A→ B)→ A

x : A ` x : A | α : A,δ :⊥
(name)

x : A ` [α]x :⊥ | α : A,δ :⊥
(µ)

x : A ` µδ.[α]x : B | α : A
(→ I)

` λx.µδ.[α]x : A→ B | α : A
(→ E)

(A→ B)→ A ` y(λx.µδ.[α]x) : A | α : A
(name)

(A→ B)→ A ` [α]y(λx.µδ.[α]x) : A | α : A
(µ)

(A→ B)→ A ` µα.[α]y(λx.µδ.[α]x) : A
(→ I)

` λy.µα.[α]y(λx.µδ.[α]x) : ((A→ B)→ A)→ A

Note that we needed to expand (CR) into the two rules, (name) then (mu), both on the same
covariable. This is closely linked with the (ηµ) reduction. Also see that (WR) corresponded to
a (µ) rule for a dummy variable δ that doesn’t appear in the subterm, allowing us to reason
about an arbitrary extra conclusion.

Remark. The inhabiting term is the same as in example 4.2.2; linking us back to the original
discovery of classical computation – callcc (or thereabouts).

Example 4.4.2. [61] We show a derivation of double negation elimination, ¬¬A→ A, which
implies that the deduction system is as strong as the full classical logic [2, 3].

(Ax)
¬¬A ` ¬¬A

(Ax)
A ` A (→ I)
` ¬A,A

(→ E)
¬¬A ` A (→ I)
` ¬¬A→ A
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(Ax)
¬¬A ` ¬¬A

(Ax)
A ` A (passivate)

A ` ⊥ | A
(→ I)

` ¬A | A
(→ E)

¬¬A ` ⊥ | A
(activate)¬¬A ` A (→ I)

` ¬¬A→ A

However, if we try to follow the derivation to get the inhabiting term, we hit a snag in the
last 3 lines. The issue is that we perform an activate without first passivating; instead there is
a preceeding (→ E). As (µ) corresponds with (activate), (name) with (passivate), we would need
to add an extra (passivate) between the (activate) and the (→ E); this is because µ terms must
always have [·] as its immediated subterm. So we will have to expand to the derivation with:

¬¬A ` ⊥ | A
(passivate)

¬¬A ` ⊥ | A,⊥
(activate)¬¬A ` A | ⊥
(→ I)

` ¬¬A→ A | ⊥

But we now have a dangling conclusion of ⊥. Semantically, it is easy to see it is equivalent
(as ⊥ can’t be true) to the previous derivation, however we can’t syntactically remove the ⊥;
if we tried to µ-abstract it, we would need to choose another covariable to bind to ¬¬A→ A,
leaving us with another dangling conclusion.

If we look at the inhabiting term:

(Ax)
y : ¬¬A ` y : ¬¬A

(Ax)
x : A ` x : A | α : A,δ :⊥

(name)
x : A ` [α]x :⊥ | α : A,δ :⊥

(µ)
x : A ` µδ[α]x :⊥ | α : A

(→ I)
` λx.µδ.[α]x : ¬A | α : A

(→ E)
¬¬A ` y(λx.µδ.[α]x) :⊥ | α : A

(name)
¬¬A ` [α]y(λx.µδ.[α]x) :⊥ | α : A,γ :⊥

(µ)
¬¬A ` µα.[α]y(λx.µδ.[α]x) : A | γ :⊥

(→ I)
` λx.µα.[α]y(λx.µδ.[α]x) : ¬¬A→ A | γ :⊥

The derivation requires we know a free covariable γ to have type ⊥. As explained in [70],
this corresponds to the fact that the calculus has no explicit (⊥E) rule; this would correspond
with allowing to deriveA and then contract with the inactiveA (or allowing to activate without
first passivating).

This begs the question; if we want a full classical logic, how do we handle this free conclusion?

4.4.2 Towards a Complete Logic

Allowing Free Covariables

If we want to remain in the same λµ-calculus, there are two main options. Parigot, in the original
presentation of λµ [61], suggests that we allow these free covariables (with bottom type), but not
mention them in the type system. This would mean γ in the example above wouldn’t appear in
the co-context. Although this gives a complete logical system, the (⊥E) rule is only implicit, so it
loses some obvious correspondence with natural deduction. It also isn’t very ‘clean’ to have free
covariables about the place (especially from an implementation perspective); a subterm would
need a way to make sure the covariables aren’t bound in a superterm.

The Top-Level

An alternative approach is suggested by Ariola et al in [3, 2] is to add a constant coterm top that
has the typing rule:

Γ `M :⊥ | ∆
(top)

Γ ` [top]M :⊥ | ∆
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With this rule, we are able to derive the (⊥E) rule;

Γ `M :⊥ | ∆
Γ ` [top]M :⊥ | ∆

Γ ` µδ.[top]M : A | ∆

Where δ < fn(M). We can in fact construct the term, A = λx.µδ.[top]x : ⊥ → A to act as a
constructor for the (⊥E) rule:

Γ ` A :⊥→ A | ∆ Γ `M :⊥ | ∆
(→ E)

Γ ` A(M) : A | ∆

The computational interpretation of A is with Felleisen’s ‘abort’ operator [30], which allows
a term to ‘throw’ to the top-level [33]; that is, to drop the current context, and operate in the
‘empty’ context (known as the top-level). Any program’s evaluation is started in this implicit
top-level context that is guaranteed to have type ⊥ [70, p135]; and any subterm is able to switch
to this context. As explained in [3, p21], this is similar to only considering the terms of the
form µγ.[γ]M, such that γ is typed with the top-level type. This means our computational
interpretation of ⊥ is the type of the top-level. From a computational perspective, Ariola et
al. argue:

". . . , the presence of the continuation top makes it possible to distinguish between
aborting a computation and throwing to a continuation (as aborting corresponds to
throwing to the special top-level continuation)" [3]

Expanding the Calculus

The last option is to determine that the λµ-calculus is indeed too weak, so we must add reductions
or more operators to achieve completeness. The symmetric calculus [25] adds an extra reduction
rule allowing µ to consume context to the left;

N (µα.M)→µ′ µα.M
[
[α](N•)/[α]•

]
Another calculus is λ̄µµ̃ [20], which fully embraces the classical sequent calculus. It uses a

stratified definition of syntax, to separate them as explicit ‘terms’, ‘coterms’ and ‘commands’,
where commands represent subroutines that don’t return a value. There is also a new binder, µ̃,
which is similar the the left rule of the symmetric calculus; it binds values into commands.

In the other direction, the νλµ [70] calculus fully embraces natural deduction. There is an
explicit negation type, ¬, representing continuations, and it allows general terms to appear in
[•] (e.g. [λx.zMx]y is a valid term). Negation is introduced to a term by the ν binder, and is
eliminated by applying a continuation; [M]N . The calculus also collapses the set of variables and
covariables to just the latin letters. (µ) is made to explicity represent (RAA).

Both of these calculi are non-confluent, but, as we suggested in 4.2, this problem can be
avoided in practice by choosing a deterministic evaluation strategy, so non-confluece is really
a non-issue.

4.5 Sums and Products

Adding sums and products to λµ is almost as simple as just adding the syntax, typing rules and
reductions from 3.15. Thus we can expand the definition of λµ terms with:

M,N ::= . . . | (M,N ) | πi(M) | ini(M) | caseM of (N1|N2)

The only decision to be made is if we allow µ reductions for when projections and case analysis
interact with µ-bound terms [34]. If we use de Groote’s intuition that, interacting with a term
µα.M is in fact interacting with the subterms named by α [27], we can expand this notion to
projections and case elimination: a projection πi(µα.M) is in fact projecting the subterms named
by α; a case elimination of µα.M is in fact performing case analysis on the subterms named by α.
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We refer to these rules as (ζ) rules, thanks to [76].

(ζπi ) πi(µα.M) → µα.M
[
[α]πi(•)/[α] •

]
(ζ+) case µα.M of (N |L) → µα.M

[
[α]case • of (N |L)/[α] •

]
The main advantage of these reductions is they allow us to extract the subproofs in each

structure.

Example 4.5.1. Consider the following terma, where M : A,P : A,Q : B

µα.[α](M,µδ.[α](P ,Q)) : A×B

This term is in normal form. Without the (ζ) rules, we aren’t able to get a ‘useful’ value out of
either projection,

π1(µα.[α](M,µδ.[α](P ,Q))) : A π2(µα.[α](M,µδ.[α](P ,Q))) : B

as these terms are also in normal form. Although the theorem proving aspect is still sound,
from a computational perspective we are unable to access the proofs of A and B. The (ζ) rules
allow us to access these proofs:

π1(µα.[α](M,µδ.[α](P ,Q)))
→ µα.[α]π1(M,µδ.[α]π1(P ,Q))
→ µα.[α]M
→ M

π2(µα.[α](M,µδ.[α](P ,Q)))
→ µα.[α]π2(M,µδ.[α]π2(P ,Q))
→ µα.[α]µδ.[α]π2(P ,Q))
→ µα.[α]µδ.[α]Q
→ µα.[α]Q
→ Q

aThe term was found as a simplification of Herbelin’s term used to show degeneracy of Σ types in the presence of
control [39].

4.6 λµ-Calculus as a Natural Deduction System

In [61], Parigot gives an alternate presentation of the classical natural deduction which has only
single conclusions. Summers [70] shows how make the same transformation to the type system
for λµ, giving us a type system with single conclusions.

Definition 4.8: Alternative Typing for the λµ-Calculus [61, 70]

(Ax)
Γ ,x : A;¬∆ ` x : A

Γ ,x : A;¬∆ `M : B
(→ I)

Γ ;¬∆ ` λx.M : A→ B
Γ ;¬∆ `M : A→ B Γ ;¬∆ `N : A

(→ E)
Γ ;¬∆ `MN : B

Γ ;¬∆ `M : A
(name)

Γ ;¬∆,α : ¬A ` [α]M :⊥
Γ ;¬∆,α : ¬A `M :⊥ (µ)
Γ ;¬∆ ` µα.M : A

To bring the calculus closer to natural deduction, Summers also allows µ-binding and naming
to be split, so terms of the form µα.M and [α]M are syntactically valid for any term M [70]. This
allows the typing rules (name) and (µ) to be used separately in derivations. Importantly, this
means that some terms can be explicitly typed by ⊥. As we will see, ⊥ will represent conflict
much more obviously in this system.

In this reformulation, it is clearer that, if we don’t allow µ-binding and [·] to be split, the
calculus corresponds with minimal classical logic, rather than classical logic. In particular, there
is no obvious correspondence with the (⊥E) rule.

We can see that the (µ) rule is similar to (RAA), and (name) to (¬E) . However, the rules
a restricted form of their logical counterparts in which the negated premise is restriced to an
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axiom, as explained in [70] with the quasi-derivation (note the false ‘(Ax)’ rule used on the left
derivation) comparing the two:

‘(Ax)’
Γ ;¬∆,α : ¬A ` α : ¬A Γ ;¬∆ `M : A

(¬E)
Γ ;¬∆,α : ¬A ` [α]M :⊥

Γ ;¬∆ `M : A
(name)

Γ ;¬∆,α : ¬A ` [α]M :⊥

As outlined by Summers [70, p93], from a logical perspective, this restriction of negated
propositions to axiomatic assumptions seems arbitrary. To fully inhabit (¬E), we need to be able
to use any (non-trivial) proof within the [•] terms. However, the syntax and thus the (name) rule
only allows being able to use the ‘special‘ assumptions (greek letters).

A similar restriction to greek variables is seen in the (µ) rule when compared with (RAA); it
means we can only use (RAA) on these ‘special’ assumptions, and not on non-trivial proofs.

This can lead to more cumbersome derivations when compared to, say, NK→.

Example 4.6.1. In the logical system corresponding to the type system in Definition 4.8, we
can prove double negation elimination (¬¬E) as follows:

(Ax)¬¬A;∅ ` ¬¬A

(Ax)
A;∅ ` A

(name)
A;¬A ` ⊥

(→ I)∅;¬A ` ¬A
¬¬A;¬A ` ⊥

(RAA)¬¬A;∅ ` A
(→ I)∅;∅ ` ¬¬A→ A

Note that we have to use the ‘special’ assumption of ¬A in the derivation, to be allowed to
use the (RAA) rule on it later on.

However, in a system with (¬E) and no distinguished set of ‘special’ assumptions, this
proof is a lot more simple:

(Ax)¬¬A ` ¬¬A (Ax)¬A ` ¬A
¬¬A;¬A ` ⊥

(RAA)¬¬A ` A (→ I)` ¬¬A→ A
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5 | Dependent Types

Propositional logic is limited in what it can reason about. As mathematics is a first order system,
we need to be able to reason about first order logic if we wish to prove theorems about maths.
Luckily, the Curry-Howard correspondence expands to first order logic with dependent types. In a
dependent type system, types can depend on terms and, in fact, types are terms.

The most popular proof assisstants, like Coq, Lean and Agda, all have type systems descended
from a seminal dependent type system, Intuitionistic Type Theory, originally defined by Martin
Löf [46].

As the name suggests, these dependent type theories are based on first order intuitionistic
logic, and thus we don’t have the usual classical tautologies, A ∨ ¬A or ¬∀x.¬A → ∃x.A. The
goal of this report is to explore theorem proving in classical logic, we will want to see how these
dependent types interact with the control operators that bring the classical power to intuitionistic
calculi. In particular, this will let us see if we are able to define a calculus that can reason about
first order classical logic.

In this chapter, we will give an exposition of dependent types. We will then observe the
problems that occur when trying to mix dependent types with control operators, and how we can
remedy them. Finally, we will introduce inductive families, which are a generalisation of Haskell
data types that are able to be indexed by values/terms; these allow us to express and reason about
more complex mathematical structures, like vectors.

5.1 Intuitionistic Type Theory

This exposition is based on those in [75, p24] and [47, p10].
To let types depend on terms, we will see that terms will have to appear in types. This means

we collapse the syntax of types and terms into just terms;

Definition 5.1: Intuitionistic Type Theory Syntax [75]

M,N,A,B ::= x Variable
| (x : A)→ B Dependent Function Type
| λx : A.M Lambda Abstraction
| let x =M in N Let
| MN Function Application
| (x : A)×B Dependent Pair Type
| (M,N ) Dependent Pair
| πi(M) Pair Projection (i = 1,2)
| A+B Sum Type
| ini(M) Sum Injection (i = 1,2)
| case(M,N,L) Case Analysis
| M =N Identity Type
| refl Reflexivity
| substM N Substitution
| ⊥ Empty Type
| 1 Unit Type
| 〈〉 Element of Unit Type
| Ui Type Universe (i = 0,1, . . . )

As we will see, typing this syntax will let us fully inhabit first order intuitionistic logic.

Universes and Type Families If types are now terms, we need to be able to assign types to types.
This ‘type of types’ is known as a universe; a type whose elements are types [75]. If all types are
contained within one universe, U , we can prove a type theory version of to Russell’s paradox [19]
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(‘does the set of all sets contain itself?’). To avoid this, we have a hierarchy of universes, U0 : U1 :
U2 : . . . , that is cumulative, so A : Ui =⇒ A : Ui+1. Unless relevant, we usually omit the universe
level (the subscript), and leave it implicit.

Thus, types are terms whose type is a universe. For example, our simple types from 4.5 can
be typed as A : U . We can also have a family of types, B : A→U , which can be seen as a function
that, given an a : A, returns a type B(a).

Definition 5.2: Types and Universes [75, p434]

(U I)
Γ ` Ui : Ui+1

Γ ` A : Ui (UC)
Γ ` A : Ui+1

Contexts As our types are now more complex, we have to make sure our contexts are well-
formed. This amounts to checking that each type in the context is indeed a type, and not just a
term.

Definition 5.3: Contexts [75, p432]

∅ ` valid
Γ ` A : Ui

Γ ,x : A ` valid
Γ ,x : A ` valid

(Ax)
Γ ,x : A ` x : A

Constants The only difference with the STLC is we add rules to verify that constant types are
indeed types (given a valid context)

Definition 5.4: Constant Types [75, p436]

Γ valid (0)
Γ ` 0 : Ui

Γ valid (1)
Γ ` 1 : Ui

Γ valid (1I)
Γ ` 〈〉 : 1

Sum Types These sum types are non dependent, and are just the STLC typing rules with extra
checks for well-formed types. A dependent version can be given (see [75, p436]), but for reasons
we will see later in this chapter, we will stick to the more simple version presented by Herbelin
in [38].

Definition 5.5: Sum Types [75, p436]

Γ ` A : Ui Γ ` B : Ui Γ `M : A
(+I1)

Γ ` in1(M) : A+B
Γ ` A : Ui Γ ` B : Ui Γ `M : B

(+I2)
Γ ` in2(M) : A+B

Γ `M : A+B Γ ` C : Ui Γ ,x : A `N : C Γ , y : B ` L : C
(+E)

Γ ` case(M,x.N,y.L) : C

Equality We have two kinds of equality in ITT. Definitional equality, M ≡ N , denotes when M
and N are equal under β-equivalence (and α-equivalence); this is a meta-theoretic property that
can’t be directly reasoned about within the type system. On the other hand, propositional equality,
M =A N , is a type that identifies two equal termsM andN under the typeA. Crucially, this allows
us to reason about equality under a type within the type system.

26



Definition 5.6: Equality [75, p437]

Γ `M : A Γ ` A : Ui (refl)
Γ ` refl :M =AM

Γ ` A : Ui Γ `M : A Γ `N : A
(=)

Γ `M =A N

Γ ,x : A ` B : Ui Γ ` P :M =A N Γ `Q : B[M/x]
(subst)

Γ ` subst P Q : B[N/x]

Dependent Functions

Definition 5.7: Dependent Function Type Assignments [75, p434]

Γ ,x : A `M : B
(→ I)

Γ ` λx.M : (x : A)→ B

Γ ` A : Ui Γ ` x : A ` B : Uj
(Π)

Γ ` (x : A)→ B : Uitj

Γ `M : (x : A)→ B Γ `N : A
(→ E)

Γ `MN : B[N/x]

A dependent function is a generalised version of the familiar function type [75]. In a dependent
function, the codomain depends on the value given to the function; it is a type family B : A→U .
We write these types (x : A)→ B, where x is a variable bound over B. Note that in the elimination
rule, the argument supplied to M is also substituted in the type, B[N/x].

A itself could be a universe, which means x would be a type, so we get polymorphism (over a
given universe) for free. Types (x : A)→ B where x doesn’t occur free in B are just the same (and
written) as our old function types, A→ B.

Dependent functions correspond with ∀ quantification in logic. One major advantage of
dependent types is that the types make guarantees about compile time safety;

Example 5.1.1. Consider a function f : x→ (y : N)→ (y > 0)→ N, f := λxyp.x/y. Here, x and
y are both natural numbers, and p is a proof that y is greater than 0. This means we can be
sure that the function won’t have a division by zero error at runtime; the function won’t run
without a certificate that the denominator is non-zero.

Dependent Pairs

Definition 5.8: Dependent Pair Type Assignments [75, p435]

Γ `M : A Γ `N : B[M/x]
(×I)

Γ ` (M,N ) : (x : A)×B
Γ ` A : Ui Γ x : A ` B : Uj

(Σ)
Γ ` (x : A)×B : Uitj

Γ `M : (x : A)×B
(×E1)

Γ ` π1(M) : A
Γ `M : (x : A)×B

(×E2)
Γ ` π2(M) : B[π1(M)/x]

To get the correspondence with ∃ quantification, we generalise pairs A×B to dependent pairs;
(x : A) × B. Again, B : A → U is a family of types indexed by A, and x is bound over B. Types
(x : A)×B are inhabited by pairs (y,N ). We call the left element the witness, and the right element
the proof. In the right elimination rule, we see that the witness is substituted into the type of the
proof. Uitj means the least upper bound of the two levels Ui and Uj ; its use in the (Σ) rule helps
keep the system consistent.

This characterisation of existence is constructive, and is in fact called ‘strong’ existential
quantification; a proof of (x : A)×Bmust give a witness that we can extract. This can be compared
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with a ‘weak’ existential, which might come from a proof of ¬∀.

Example 5.1.2. ∃x.even(x) can be translated to type theory as: (x : N) × even(x). A term
inhabiting this type will be a pair (y,M), where y : N and M will provide a proof that y is
even.

5.2 The Problem of Control

Unfortunately, dependent types don’t easily expand to classical logic. As Herbelin showed in [39],
a naive mix of dependent types and control leads to a ‘degeneracy in the domain of discourse‘.
In English, this means that you can prove any two terms are equal; for example, one can give a
proof that 0 = 1. Specifically, if we add Σ types to λµ (with the (ζ) rules), we are able to derive the
degeneracy.

Such an offending term is given by Miquey in [51];

P := µα.[α](0,µδ.[α](1,refl)) : ∃x.x = 1

If we observe the reductions when asking for a witness x such that x = 1,

π1(µα.[α](0,µδ.[α](1,refl))) → µα.[α]π1(0,µδ.[α]π1(1,refl))
→ µα.[α]0
→ 0

Then using the typing rule for right projection, (noting that ((x = 1)[π1(P )/x]) ≡ (0 = 1)) we
can derive 0 = 1,

Γ ` P : ∃x.x = 1
Γ ` π2(P ) : 0 = 1

As described by Miquey [51, p8], the issue comes down to P behaving differently in different
contexts. In the left projection, P gives the (incorrect) witness 0. In the right projection, the term
reaches the µδ.[α], which makes the term throw away the witness 0 (via µδ), and then ‘backtrack’
to the original context (via [α]), in which it uses the witness 1 in the proof – P uses a different
witness depending on its context.

A key thing to note is that P does contain a valid proof of ∃x.x = 1 as a subterm, it’s just the
backtracking that causes the problem. This suggests that, apart from a collapse of the domain of
discourse to a single element, we aren’t able to prove things that aren’t true for any x.

5.3 Avoiding the Degeneracy

5.3.1 dPAω

As the degeneracy is caused by a direct interaction between control and dependent types, a simple
solution is to only allow values within the proofs of dependent types and within their elimination
(and a call-by-value evaluation strategy) [51].

In [38], Herbelin defines a calculus, dPAω, in which this restriction can be relaxed to a subset
of terms called negative elimination free (nef). dPAω is a proof system for Peano Arithmetic that
allows for classical proofs with dependent types about arithmetic terms with finite types1.

We present the syntax in 5.9. The calculus and its associated types are split into two (mutually
defined) layers; one for terms, which represent mathematical terms (like 1+2); and one for proofs,
representing proofs about the mathematical terms. For completeness, we show the syntax for the
inductive, coinductive and recursive proof/term constructors, but they won’t be relevant to our
discussion.

1In this context, finite types means the simple Curry types with the only atomic type being the natural numbers.
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Definition 5.9: dPAω Syntax [38]

t,u ::= x Arithmetic Variable
| 0 Zero
| s(t) Successor
| rec t of [u0|(x,y).us] Recursion Operator
| λx.t Arithmetic Function
| tu Arithmetic Function Application
| wit(p) Dependent Left Projection

p,q ::= a Proof Variable
| (p,q) Simple Pair
| split (a,b) = p in q Simple Pair Destructor
| (t,p) Dependent Pair
| prf(p) Dependent Right Projection
| dest (x,a) = p in q Non-Dependent Destructor for Dependent Pair
| ini(p) Sum Type Injection
| case(p,a1.q1, a2.q2) Sum Elimination
| λx.p Term Abstraction
| pt Proof-Term Application
| λa.p Dependent Abstraction
| pq Dependent Application
| refl Reflexivity
| subst p q Substitution
| ind t of [p|(x,a).q] Inductive Fixpoint
| cofix(t,b,x) p Coinductive Fixpoint
| catchα p Save Context
| throw α p Switch to Context
| exfalso p Context Abort
| let a = p in q

The control terms are catchα p,throw α p and exfalso p, which can be read as µα.[α]p,µδ.[α]p
and µδ[top]p, respectively [38]. Intuitively, catchα p will ‘catch’ the current context, and redirect
it to all α-named terms – including running p in this context. throw α p will ‘throw’ away the
current context, and run p in the context that is redirected from α. exfalso p is very similar to
the A operator: computationally, it means to ‘abort’ from the current context, and run p in an
empty context; logically, it relates to ex falso quidliobet, that we know as (⊥E).

Although quite cumbersome, this stratified syntax makes it apparent when our pairs and
functions are allowed to be dependent. As we will see in the typing, a pair of two proofs cannot
be dependent, but a pair of a term and a proof can be.

The syntax for ‘case’ is slightly different, where case(p,a1.q1, a2.q2) means ai is bound over qi .
The typing rule is similar to before, but the two cases being ‘functions’ is now replaced them by
being proofs using the free variable ai :

Γ ` p : A∨B Γ , a1 : A ` q1 : C Γ , a2 : B ` q2 : C
(∨E)

Γ ` case(p,a1.q1, a2.q2) : C

For the restrictions on when we allow dependent types, we define the proof values and nef

proofs of the calculus.

Definition 5.10: dPAω Proof Values [38]

The values of this dPAωare,

V ::= x | ini(V ) | (V1,V2) | (t,V ) | λa.p | λx.p | refl
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Definition 5.11: nef Proofs [38]

The nef proofs are;

N ::= a
| (N1,N2) | split (a,b) =N1 in N2 | (t,N ) | prf(N ) | dest (x,a) =N1 in N2
| iniN | case(p,a.N1,b.N2)
| λx.p | λa.p
| refl | subst N1 N2
| ind t of [N0|(x,a).Ns] | cofix(t,b,x) N | let a =N1 in N2

nef proofs represent those proofs which cannot backtrack when evaluated [52, p112]; note
that it is more general than values, and certainly all values are nef. Importantly, this definition
says that λx.p and λa.p for any proof p is nef. This is why applications pq and pt aren’t nef, even
for p and q nef; if p = λx.p′ (so p is nef) and p′ isn’t nef, then certainly p′[t/x] isn’t nef (and a
similar reasoning for p = λa.p′ and pq).

Perhaps we could expand nef to contain applications (λx.p)q when p,q ∈ nef, although this is
covered by its immediate reduction to let x = q in p. This suggests it could be worth exploring
if a proof p is nef when p→∗ q, and q ∈ nef, or that we could consider the set of terms that are
‘reducible to nef’.

5.3.2 Reductions

Reductions in this calculus largely follow a call-by-value strategy [38, 52], and we highlight the
main rule that applications reduce to let expressions:

(λx.p)q→ let x = q in p

The only exception to the call-by-value is for the coinductive operator, cofix, which follows a
lazy (call-by-need) reduction. Lazy reduction is needed as coinductive terms can be potentially
infinite, so we only want to evaluate the terms we definitely need.

5.3.3 Type Assignments

In dPAω, terms have so called finite types, which are constructed from the natural numbers and
functions on the natural numbers [38],

T ,U ::= N | T →U

The proofs have the interesting types, called formulae2 [38];

A,B ::= t = u | (a : A)→ B | A∨B | A∧B | ⊥ | >
| ∀(x : T ).A | ∃(x : T ).A | ν(t, f ,x).A

It might seem odd that we have both a dependent function type (a : A)→ B and a for-all type
∀(x : T ).A; but a close inspection of the bound variable will explain why: the dependent function
(a : A) → B represents a proof of B depending on a proof of A, and is based on implication;
∀(x : T ).A represents a proof about all arithmetic terms of type T , and corresponds instead with
∀ of first order logic. This means that in dependent functions (unlike dependent pairs), proofs
can depend on both terms and proofs.

The distinction between A ∧ B and ∃(x : T ).A is more immediate; it shows that, in a pair,
the type of the proof can only depend on a term, not another proof. In particular, we can’t
existentially quantify over proofs (i.e. ∃(a : A).B is not a valid type).

The typing judgements are of the form Γ ` t : T or Γ ` p : A; the covariables α are typed as
α : Ay, negated assumptions in the context

2ν(t, f ,x).A represents the type for coinductive constructs, which, again, we ignore in this discussion.
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Pairs

The syntax allows for two kinds of pairs; a pair of proofs (p,q), or a pair of a term and a proof
(t,p). If p : A,q : B, then (p,q) is typed by the (non-dependent) conjunction A∧B; the typing rule
for introduction is as in 3.15, the elimination rule (using the split constructor) is easy to derive,
taking into account Herbelin’s definition of πi := split (a1, a2) = p in ai .

Definition 5.12: Dependent Pairs [38]

Γ ` t : T Γ ` p : A[t/x]
(∃I)

Γ ` (t,p) : ∃(x : T ).A
Γ ` p : ∃(x : T ).A Γ ,x : T ,a : A ` q : B

(∃E)
Γ ` dest (x,a) = p in q : B

Γ ` p : ∃(x : T ).A p ∈ nef
(∃dE1)

Γ `wit p : T
Γ ` p : ∃(x : T ).A p ∈ nef

(∃dE2)
Γ ` prf p : A[wit p/x]

The pairs (t,p) are the dependent pairs; if t : T ,p : A, we have (t,p) : ∃(x : T ).A. This proof has
two kinds of elimination rules, (∃E) and (∃dEi). (∃E) can be used only when A does not depend
on x, so this can be seen as the simple product type, (t,p) : T ×A. Here it doesn’t matter if p < nef.
If, however, x does occur free in A, then the dependent elimination (∃dEi) must be used and,
crucially, we can only ask for the witness or proof of p when p ∈ nef.

Functions

Definition 5.13: Dependent Functions [38]

Γ , a : A ` p : B
(→ I)

Γ ` λa.p : (a : A)→ B

Γ ` p : (a : A)→ B Γ ` q : A a < fv(B)
(→ E)

Γ ` pq : A

Γ ` p : (a : A)→ B Γ ` q : A q ∈ nef, a ∈ fv(B)
(→ Ed)

Γ ` pq : B[q/a]

Γ ,x : T ` p : A
(∀I)

Γ ` λx.p : ∀(x : T ).A
Γ ` p : ∀(x : T ).A Γ ` t : T

(∀E)
Γ ` pt : A[t/x]

The change to dependent functions is similar. (→ I) is the same as before, and we have two
arrow elimination rules that correspond to whether or not the functions are dependent or not.
In (→ E), the function is not dependent, so we don’t need q ∈ nef. In (→ Ed), the function is
dependent, so we do need to ensure q ∈ nef.

The (∀) rules are simpler as the argument of (∀)-typed functions are terms, which we know
can’t backtrack, so can use the usual rules of ITT.

5.4 Using dPAω

In Herbelin’s original presentation of dPAω [38], they claim the usual desirable properties of a
calculus; subject reduction, normalisation and consistency. Subject reduction is proven, but the
proof of consistency relies on the proof of normalisation, which was only sketched. Indeed, this
sketch turned out to be ‘hard to formalize properly‘ [52, p113].

Normalisation is tackled by Miquey in [52, p221]. They don’t directly prove normalisation of
dPAω, but instead devise a sequent calculus version of dPAω (building upon their work in [51])
called dLPAω, for which they do prove normalisation. They argue that, as the two calculi share the
same computational features, ‘it is easy to convince ourself that dPAω normalises too’. Unfortunately,
a proof of this statement isn’t given.
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The good news is, this work has recently grown into a more general (polarised) sequent
calculus Ldep [54]. In a presentation [55] and, more recently, a draft paper [53] they add control
Extended Calculus of Constructions [45] (ECC) giving a calculus called ECCK, for which a translation
into Ldep is given. Put simply, ECCK looks a lot like a generalised dPAω mixed with ITT, and this
idea will serve as the basis of our work in Chapter 7.

5.5 Inductive Families

In this section we will give a brief overview of inductive families, following a mix of the exposition
by Dyber [29] and Brady [14]. To keep consistent with the rest of this project, as well as to help
with intuition, we will present inductive family schema via inference rules.

Inductive families are a generalisation of data types by adding indices to the types; values that
the constructors can depend on. Inductive families can be seen as types with type parameters
and value indices.

The go-to example for such types is vectors [59, p24]; lists whose length is in their type.

data Vec (A : U ) : N −→ Ui where
nil : Vec A 0
cons : (n : N)→ A→ Vec A n→ Vec A (n+ 1)

Importantly, a function that asks for the head of a vector can have the type signature;

headV : (A : U )→ (n : N)→ Vec A n→ (n > 0)→ A

so that the function takes a vector and a proof that its length is non-zero, before it is able to return
the head of the underlying list.

Definitions

We make a few definitions that we’ll need for the inductive families.

Definition 5.14: Telescope [15, 29]

We write the telescope (a :: σ ) as an abbreviation of the (finite) sequence of type assignments
(a1 : σ1) · · · (an : σn). σ is called a sequence of types, of the form σ1 · · ·σn. Crucially, each
successive assignment binds its variable over the subsequent sub-telescope. That is, ai is
bound over (ai+1 : σi+1) · · · (an : σn).
We sometimes write ~σ to mean a sequence of types, and ~x for a sequence of terms, x1 · · ·xn.

Definition 5.15: Telescope Derivation [15, 79]

Telescopes are typed by the following rules. We write · for an empty telescope and term
vector. m ~m is taken to mean the sequence formed by addingm to the start of the sequence
~m; (a : A)(b :: B) is the telescope formed by adding (a : A) to the start of the telescope (b :: B).

Γ ` · : ·
Γ `m : A Γ ` ~n : (b :: B[m/x])

Γ `m ~n : (x : A)(xs :: B)

If we write ~m = m ~n, and (c :: C) = (x : A)(xs :: B), then we can succinctly write the
conclusion of the rule above as Γ ` ~m : (a :: A).

Γ ` A1 : Ui · · · Γ , a1 : A1, . . . , an−1 : An−1 ` An : Ui
Γ ` (a :: A) : Ui

Note that this means Ai can depend on aj for j < i.

5.5.1 Defining Inductive Families

To generalise Haskell-style data types we need to know; how to form the data type, how to use
the constructors, and how to eliminate a data type by case analysis. Brady [14, p23] describes an
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inductive family as a disjoint union of constructors. In this sense, they can be seen as a direct
generalisation of Haskell’s parameterised data types, but allowing them to be indexed by values.

Definition 5.16: Inductive Family Declaration [14]

data D (σ :: P ) : (α :: I) −→ Ui where
n∑
i=1

ci : (~Ai)(~Bi) −→D σ ~si

Each σ are s-types, so we have σi : U . (~Ai)(~Bi) −→ D σ ~si is a shorthand for Ai1→ ·· · → Aiki →
Bi1→ ·· · → Bili → D σ ~si . These types are allowed to be dependent, and they can also depend on
the parameters σ and the indices α. The types Aij do not contain recursive occurences of D σ ;
the types Bij are allowed to contain recursive occurences of D σ , however these occurences must

be strictly positive. This means Bij can be written Bij = (~B′ij )→ D σ ~wi , for some indices ~wi . Strict
positivity is used to ensure terminating data type constructors [59, p100].

In general, this means the type of each constructor must be strictly positive wrt D σ . The
arguments of type Aij are thus called the non-recusrive arguments, and those of type Bij are called
recursive. The ~si are allowed to be fully dependent on all the types, parameters and indices before.
This marks one of the main differences between the parameters and the indices; the parameters
must be the same when constructing the type from other occurences of D σ , but the indices are
allowed to change.

Each constructor ci has implicit arguments for the parameters σ , i.e.

ci : (~P )(~Ai)(~Bi) −→D σ ~si

But the parameters must be the same as the data type it is constructing, so, when defining the
constructors, the (~P ) can be inferred from the P in the first part of the declaration. This means
that we can type the application of constructors by:

ci ~p ~xi ~yi :D ~p ~si

Valid Definition

To ensure an instantiation of a data type is valid, we need to check the parameters and indices
are of the correct types, and that the parameters are s-types.

Definition 5.17: Inductive Family Definition Check [29, 14]

data
Γ ` (σ :: P ) :: Ui Γ , (σ :: P ) ` (α :: I) :: ~Ui

Γ `
(
D (σ :: P ) : (α :: I)

)
: Ui

where
Γ ` (a :: Ai) :: ~Uj Γ , (a :: Ai) ` (b :: Bi) :: ~Uj Γ , (a :: Ai), (b :: Bi) ` ~si :: I

Γ ` ci : (a :: Ai)(b :: Bi) −→D σ ~si

Formation and Introduction

Definition 5.18: Inductive Family Formation [29, 14]

Given a data declaration D (σ :: P ) : (α :: I) in the environment, we check instances of the
type by:

Γ ` ~p :: P Γ ` ~q :: I[~p/σ ]
(data)

Γ `D ~p ~q : Ui
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Definition 5.19: Inductive Family Introduction [29, 14]

We are given a data declaration D (σ :: P ) : (α :: I), and constructors ci : (a :: Ai)(b :: Bi) −→
D σ ~si . There are two ways that we could allow the introduction of constructors. The first
is to introduce them as constant functions, turning the telescopes into dependent function
types;

ci : (p1 : P )→ ·· · (a1 : Ai1)→ (a2 : Ai2)→ ·· · →D ~p ~si

This has the advantage of allowing partial applications of the constructors; they essentially
become built-in functions. This style is typed by:

(ci)
Γ ` ci : (p1 : P )→ ·· · (a1 : Ai1)→ (a2 : Ai2)→ ·· · →D ~p ~si

The other option is to only allow the constructors to be used when they have all their
arguments:

Γ ` ( ~m :: P ) Γ ` ~n :: Ai[ ~m/p] Γ ` ~t :: Bi[ ~m/p,~n/a] (ci)
Γ ` ci ~m~n~t :D ~p ~si

Elimination

An eliminator for an inductive family can be seen as a generalisation of the ‘case’ construct for
sum types, or the ‘case * of’ construct of Haskell.

Definition 5.20: Inductive Family Eliminator [29, 14, 79]

(target): Γ ` t :D p q

(motive): Γ , (x :D p q), (y :: P ), (z :: I) ` C : Ui
(methods): Γ `mi p : (a :: Ai)(b :: Bi)(v :: Vi) −→ C[(ci p a b)/x,p/y,~si /z]

Γ ` elim t by (m1| · · · |mn) : C[t/x,p/y,q/z]

Where;

• Bij ≡ (~B′ij )→D p q′ ≡ Bij1→ ·· · → Bijk →D p q′ , and,

• Each Vij is of the form (w :: ~B′ij )→ C[(bj w)/x,p/y,q′/z]

In this sense, each Vij corresponds to bj . Seeing this as an induction, we get that Vij
represents the generalised induction hypothesis of bj [29, p9].

In mi ; vi corresponds to the inductive hypothesis constructed from the arguments supplied to
bi . A comparison of the types of each shows their similarity;

bj :
(
(w1 : Bij1)→ ·· · → (wk : Bijk)→D p q′

)
vj :

(
(w1 : Bij1)→ ·· · → (wk : Bijk)→ C[(bj w)/x,p/y,q′/z]

)
Again, using the notion that this is a generalised sum type, we get the expected reduction; that
the constructor ci is associated with the elimination method mi . Generalising further, we also
allow for recursive elimination. Writing ~m for (m1| · · · |mn), we get the reduction [14]3;

elim (ci ~p ~a ~b) by ~m −→mi ~a ~b
(
~w.(elim b1 ~w by ~m)

)
· · ·

(
~w.(elim bn ~w by ~m)

)
Note that we have abstractions of ~w in ~w.(elim bj ~w by ~m); mi is able to supply these with
arguments to cause a recursive elimination.

3The reduction presented in [14] is only for the case that each bi : D p q′ , rather than a function. What we give is a
simple generalisation.
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6 | Simple Types with Name
Polymorphism in λµ

In this chapter we present a type system for the λµ-calculus with sum and product types, and
a principal typing algorithm. This is used as the core of a Haskell-style language with context
control with name polymorphism.

6.1 Typing Algorithms for λµ-calculus

In this section we give a principal pairing algorithm for the λµ-calculus, and give the intuition
behind how it was found.

6.1.1 Towards a Principal Pairing Algorithm

(µ) rule

We recall the µ rule:

Γ `M :⊥ | α : A,∆
(µ)

Γ ` µα.M : A | ∆

The behaviour of µ with conclusions is analagous to that of λ with the context.
The algorithm will take in µα.M. We will walk through how the algorithm was derived.

1. To form the principal pair for this term, we will need to know the principal pair of the
subterm M, so we should recurse on it.

2. Assuming it succeeds on M, the typing rule states that we expect M to have type ⊥, so we
will need to check this.

3. We will have to manage two cases for the returned conclusions:

(a) If α is not free in M, it won’t appear in the open conclusions. From a bottom up
perspective reading of the rules, this is still permitted in the typing; as the (Ax) rule
allows open open conclusions. So we want this to be a valid term, but, as their is no
type A given, we will have to generate a fresh type for the term.

(b) If α is in the conclusions, we should simply remove it, and set the type to that of α.

Collecting these points, we get the function:

pp µα.M =
{
〈Γ ,∆ \ (α : A),A〉 if (α : A) ∈ ∆ # by (3b)
〈Γ ,∆,ϕ〉 otherwise # by (3a)

where
〈Γ ,∆, P 〉 = pp M # by (1)
if P ,⊥ error # by (2)
ϕ is fresh # by (3a)

(name) rule

Following the intuition of [70], we compare the rules for application and naming. This will help
us figure out how to form the principal pair of a named term.
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Γ ;¬∆ `M : A→ B Γ ;¬∆ `N : A
(→ E)

Γ ;¬∆ `MN : B
Γ ;¬∆ `N : A

(name)
Γ ;¬∆,¬(α : A) ` [α]N :⊥

Note that (name) focuses on a term N . We can see the similarity in the ‘shape’ of the syntax of
the terms [α]N and MN . The typing of MN comes naturally from the idea of M being a function
with type A → B, and N an argument with that required type A. This application produces a
value with type B.

We can try to, informally, see how this corresponds to [α]N . Notice that, in the conclusions,
we write ¬(α : A). We can use the logical interpretation to see that the rule says; if we assume a
proof of ¬A, and we ‘apply’ it to a proof of A, we will get falsum. If we now write ¬A as A→⊥,
so we can interpret this ‘application’ like so (forgiving the abuse of notation):

α : A→⊥ ` [α] : A→⊥ Γ ;¬∆ `N : A
Γ ;¬∆,α : A→⊥ ` [α]N :⊥

which looks very much like (→ E)1.
A case to watch out for is if α is already in the co-context. Well, then the type A must be

the same for N and α. This suggests an algorithm would need to use a unification procedure to
ensure the types are consitent between N and α.

We collect our observations:

1. There will only be one context and co-context to reason about (coming from pp M), so we
won’t need to worry about unifying multiple (co-)contexts.

2. The returned type will always be ⊥.

3. We will have to extend the co-context by (α : A), where A is the type of N .

4. If α is already in the co-context, we will have to unify its type with that of N .

Thus we can derive the algorithmic case for [α]N terms:

pp [α]N =
{
〈Γ , (∆,α : A),⊥〉 if α < ∆
S〈Γ ,∆,⊥〉 if α ∈ ∆

}
# by (2) & (3)

where
〈Γ ,∆,A〉 = pp N
if (α : B) ∈ ∆

S = unify A B #by (4)

# removed the extra unifications, by (1)

6.1.2 Principal Pairing Definitions

Definition 6.1: Principal Pairing Algorithm for λµ

We give pp, the principal pairing algorithm for λµa. We assume there is an environment
allowing for unique fresh types to be generated, and to be able to handle errors. The cases
for x, λx.M and MN are almost identical to the usual principal pairing algorithm for the

1In fact, in [70, p94-98], this idea is explored in more detail, by allowing any term to appear in the square brackets
(along with some other big changes to the calculus). Application for [M]N is interpreted as applying the continuation M
to the argument N, and not returning any value (i.e. the return type is ⊥, in line with our interpretation).
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λ-calculus [8]; we just add the co-context in the returned tuple.

pp x = 〈{x : ϕ},∅,ϕ〉

pp λx.M =
{
〈Γ \ (x : A),∆,A→ B〉 if (x : A) ∈ Γ
〈Γ ,∆,ϕ→ B〉 otherwise

where
〈Γ ,∆,B〉 = pp M
ϕ is fresh

pp MN = S3 ◦ S2 ◦ S1〈Γ1 ∪ Γ2,∆1 ∪∆2,ϕ〉
where
〈Γ1,∆1,A1〉 = pp M
〈Γ2,∆2,A2〉 = pp N
ϕ is fresh
S1 = unify A1 (A2→ ϕ)
S2 = unifyCtxt (S1 Γ1) (S1 Γ2)
S3 = unifyConcs (S2 ◦ S1 ∆1) (S2 ◦ S1 ∆2)

pp µα.M =
{
〈Γ ,∆ \ (α : A),A〉 if (α : A) ∈ ∆
〈Γ ,∆,ϕ〉 otherwise

where
〈Γ ,∆, P 〉 = pp M
if P ,⊥ error
ϕ is fresh

pp [α]M =
{
〈Γ , (∆,α : A),⊥〉 if α < ∆
S〈Γ ,∆,⊥〉 if α ∈ ∆

where
〈Γ ,∆,A〉 = pp M
if (α : B) ∈ ∆

S = unify A B

aAlthough this algorithm in fact returns a triple instead of a pair, we use the pairing name for consistency
with the literature.

This algorithm satisfies soundness and completeness, meaning it is safe to use as the basis for
a propositional proof assisstant.

Proposition 6.2: Completeness for ppλµ =⇒ Proof in A.1

If we have Γ `M : B | ∆ then,

• The algorithm succeeds on M.

• If pp M = 〈Π,Σ,A〉, then there exists a substitution S such that:

SΣ ⊆ Γ ,SΠ ⊆ ∆ and SA = B

Proposition 6.3: Soundness for ppλµ =⇒ Proof in A.1

For any term M, if pp M = 〈Γ ,∆,A〉, then Γ `M : A | ∆
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6.2 A Theorem Prover for Classical Propositional Logic

We expand upon the last section to define a core calculus of a theorem prover for classical
propositional logic. We derive its type system by combining that of the λµ and the ΛN [8] calculi,
to obtain a system with context control and name polymorphism; λµN (λµ-calculus with names).
We lift the restriction that definition terms can’t contain names, so that they are now able to call
functions that have already been defined. The type system doesn’t allow recursive definitions. As
the typing is sequential (with respect to the order the functions are defined), the calculus doesn’t
permit mutual recursion.

Although mutual recursion can be a desirable feature of a programming language, disallowing
it makes it easier to ensure correctness with regards to type checking as proof verification. Consider
if we had a haskell-like program:

proof_of_false :: False

proof_of_false = another_proof_of_false

another_proof_of_false :: False

another_proof_of_false = proof_of_false

If we allowed these mutual definitions, we would have to check for termination in both of them
(else we would have 2 proofs of false). In this example, it’s obvious that either function wouldn’t
terminate, but it is a well known result that generalised termination checking is undecidable [74].

6.2.1 Syntax

We add products and sums to λµ, along with their reductions (including the (ζ) reductions), and
then add the ability for terms to reference function names.

Definition 6.4: λµN -calculus

The set of types is defined by;

A,B ::=⊥ | > | ϕ | A→ B | A+B | A×B

The set of terms and definitions is defined by the grammar;

M,N ::= x | n | λx.M |MN
| µα.[β]M | µα.[top]M
| πi(M) | (M,N )
| ini(M) | case(M,N1,N2)
| 〈〉

n ::= ‘string of characters’
Defs ::= (n =M);Defs | ε

Program ::= 〈Defs;M〉

We extend reductions with the rule that, if n =M in the definitions, then n→M.

6.2.2 Type Assignments for λµN

Definition 6.5: Type Assignments for the λµ-calculus with names

We define an environment E, as a (partial) mapping of function names to types; n : A.
We use the judgements,

E;Γ `M : A | ∆ E `Defs E;Γ ` 〈Defs,M〉 : A | ∆

for terms, definition lists and programs (respectively), with type assignments;
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Logical Rules

(Ax)
E;Γ ,x : A ` x : A | ∆

(n)
E ,n : A;Γ ` n : SA | ∆

(>)
E;Γ ` 〈〉 :> | ∆

E;Γ ,x : A `M : B | ∆
(→ I)

E;Γ ` λx.M : A→ B | ∆
E;Γ `M : A→ B | ∆ E;Γ `N : A | ∆

(→ E)
E;Γ `MN : B | ∆

E;Γ `M : A E;Γ `N : B
(×I)

E;Γ ` 〈M,N 〉 : A×B | ∆
E;Γ `M : A×B | ∆

(×E1)
E;Γ ` π1(M) : A | ∆

E;Γ `M : A×B | ∆
(×E2)

E;Γ ` π2(M) : B | ∆

E;Γ `M : A+B E;Γ ,`N : A→ C | ∆ E;Γ ,` L : B→ C | ∆
(+E)

Γ ` case(M,N,L) : C | ∆

E;Γ `M : A | ∆
(+I1)

E;Γ ` in1(M) : A+B | ∆
E;Γ `M : A | ∆

(+I2)
E;Γ ` in2(M) : B+A | ∆

Structural Rules

E;Γ `M :⊥ | α : A,∆
(µ)

E;Γ ` µα.M : A | ∆
E;Γ `M : A | ∆

(name)
E;Γ ` [α]M :⊥ | α : A,∆

E;Γ `M :⊥ | ∆
(top)

E;Γ ` [top]M :⊥ | ∆

Enviroment Rules

E;∅ `M : A | ∅ E ,n : A `Defs
(Defs)

E ,n : A ` (n =M);Defs
(ε)

E ` ε

E `Defs E ,Γ `M : A | ∆
(Program)

E;Γ ` 〈Defs;M〉 : A | ∆

Note in the (n) rule, we have a substitution S of the principal type of n; this is to allow this
name polymorphism.

We give the principal pairing algorithm in Definition 6.8. The entrypoint for the algorithm
is to supply ppλµN with a list of function definitions (in the order they were defined in) and the
current term that needs to be typed. As is usual, we assume there is some environment allowing
for unique, fresh types to be generated when needed, and that it can deal with errors from the
algorithm or unification.

We extend unification for sums and products by unifying them in the same way we unify
arrow types (replacing � for + and ×);

unify (A�B) (C�D) = S2 ◦ S1
where
S1 = unify A B
S2 = unify (S1C) (S1D)

We also allow unification of variables with constant types (e.g. ⊥). As the definition of
unification is identical for each of the binary type connectives, we can see that unify will satisfy
the same properties as before, in particular; Proposition 3.10.

Again, we have soundness and completeness of the algorithm:
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Proposition 6.6: Completeness for ppλµN =⇒ Proof in A.1

If we have E;Γ ` 〈Defs,M〉 : B | ∆ then,

• The algorithm succeeds on M and,

• If ppN E 〈Defs,M〉 = 〈Π,Σ,A〉, then there exists a substitution S such that:

SΣ ⊆ Γ ,SΠ ⊆ ∆, and SA = B

Proposition 6.7: Soundness for ppλµN =⇒ Proof in A.1

For any term M, if ppN E 〈Defs,M〉 = 〈Γ ,∆,A〉, then E;Γ ` 〈Defs,M〉 : A | ∆

This means the algorithm will also be logically sound, so is certainly safe to use for a theorem
prover. As for completeness, λµ is complete only in what can be proved in natural deduction,
it is not complete with respect to the proofs themselves, although this is because λµ is based on
free deduction, rather than the usual natural deduction. As a result, we have an algorithm that is
effectively able to check a proof of propositional logic, and in turn we have a calculus that is able
to prove any tautology in classical logic.
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Definition 6.8: Principal Pairing for λµN

pp E x = 〈{x : ϕ},∅,ϕ〉
pp E n = 〈∅,∅,FreshInstance(En)〉

pp E λx.M =
{
〈Γ \ (x : A),∆,A→ B〉 if (x : A) ∈ Γ
〈Γ ,∆,ϕ→ B〉 otherwise

where 〈Γ ,∆,B〉 = pp E M
ϕ is fresh

pp E MN = S3 ◦ S2 ◦ S1〈Γ1 ∪ Γ2,∆1 ∪∆2,ϕ〉
where 〈Γ1,∆1,A1〉 = pp E M

〈Γ2,∆2,A2〉 = pp E N
ϕ is fresh
S1 = unify A1 (A2→ ϕ)
S2 = unifyCtxt (S1 Γ1) (S1 Γ2)
S3 = unifyConcs (S2 ◦ S1 ∆1) (S2 ◦ S1 ∆2)

pp E µα.M =
{
〈Γ ,∆ \ (α : A),A〉 if (α : A) ∈ ∆
〈Γ ,∆,ϕ〉 otherwise

where 〈Γ ,∆, P 〉 = pp E M
if P ,⊥ error
ϕ is fresh

pp E [α]M =
{
〈Γ , (∆,α : A),⊥〉 if α < ∆
S〈Γ ,∆,⊥〉 if α ∈ ∆

where 〈Γ ,∆,A〉 = pp E M
if (α : B) ∈ ∆

S = unify A B
pp E [top]M = S〈Γ ,∆,⊥〉

where 〈Γ ,∆,A〉 = pp E M
S = unify A ⊥

pp E ini(M) =
{
〈Γ ,∆,A+ϕ〉 if i = 1
〈Γ ,∆,ϕ +A〉 if i = 2

where 〈Γ ,∆,A〉 = pp M
ϕ is fresh

pp E case(M,N,L) = S5 ◦ S4 ◦ S〈Γ1 ∪ Γ2 ∪ Γ3,∆1 ∪∆2 ∪∆3,ϕ〉
where 〈Γ1,∆1,A〉 = pp E M

〈Γ2,∆2,B〉 = pp E N
〈Γ3,∆3,C〉 = pp E L
S1 = unify A (ϕ1 +ϕ2)
S2 = unify (S1B) (S1(ϕ1→ ϕ))
S3 = unify (S2 ◦ S1C) (S2 ◦ S1(ϕ2→ ϕ))
S = S3 ◦ S2 ◦ S1
S4 = unifyCtxts (S Γ1) (S Γ2) (S Γ3)
S5 = unifyCtxts (S4 ◦ S∆1) (S4 ◦ S∆2) (S4 ◦ S∆3)
ϕ,ϕi are fresh

pp E πi(M) = 〈Γ ,∆,S ϕi〉
where 〈Γ ,∆,A〉 = pp E M

S = unify A (ϕ1 ×ϕ2)
ϕi is fresh

pp E (M,N ) = S2 ◦ S1〈Γ1 ∪ Γ2,∆1 ∪∆2,A×B〉
where 〈Γ1,∆1,A〉 = pp E M

〈Γ2,∆2,B〉 = pp E N
S1 = unifyCtxts Γ1 Γ2
S2 = unifyConcs (S1 ∆1) (S1 ∆2)

pp E 〈ε;M〉 = pp E M
pp E 〈(n =M);Defs; N 〉 = pp (E ,n : A) 〈Defs; N 〉

where 〈∅,∅,A〉 = pp E M
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7 | ECCµ: Dependently Typedλµ-calculus

In this chapter we present a type system that adds control to the Extended Calculus of Constructions
[45], using work based on [38, 55]. It is based on the calculus ECCKfrom the draft paper [53],
but we use µ and [·] as our control operators, and we extend the calculus to allow for coproducts,
inductive records and inductive families. We bring the notion nef along with these extensions,
so that we are able to safely have dependent eliminations for both structures. We also present
a bidirectional typing algorithm to be used as the core for a theorem prover based on such a
calculus.

7.1 Some formalisms

Following [53], we collapse the syntax of dPAω, and collapse arithmetical terms and proofs into
a single set of terms. We make every (arithmetical) term nef. We prove a couple of technical
lemmas (that the author didn’t seem to be able to find) about this collapsed syntax (that should
translate easily to dPAω):

Lemma 7.1:⇒ Proofs in B.1

• (nef-Substitution Closure) If m,n ∈ nef then m[n/x] ∈ nef

• (nef-Reduction Closure) If m ∈ nef, and m→ n, then n ∈ nef

As a corollary, we get the same result for m →∗ n. Note that we do not have this result for
m =β n; consider an example, p,q ∈ nef, x < fv(p); then (λx.p)q < nef, reduces to let a = p in q ∈
nef. Thus they are β-equal, but not both in nef. This fact will be very useful when looking at a
user-level language.

We claim that this fact of nef-reduction closure is essential to the idea of nef terms; that
they can’t contain a subterm that will backtrack, and that they won’t reduce to a term that will
backtrack. When expanding the calculus, we will use this as a goal for when to define new syntax
to be nef; specifically, when a new term construct has a reduction into previously defined terms,
we will make the new construct nef only when all of its single-step reductions are nef.

This same idea will also help us determine when we can allow for dependent elimination. If
we can reduce new syntax to terms for which we already know we when we allow dependent
elimination, we can infer the requirements back to the new syntax.

7.2 Type System

The calculus and type assignments are based on a combination of dPAω[38] and ECC [45], and is
heavily inspired by ECCK[53]. The syntax of dPAω is collapsed into a single set of terms, while
maintaining the idea of when a term is nef. This does require knowing when a type is nef; we
follow the idea of [53] where types are nef if all their subterms are nef. The author admits that
this does need further investigation. The syntax is obtained by generalising [38], guided by [53]

7.2.1 Syntax
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Definition 7.2: Syntax

m,n,A,B ::= x Variable
| (x : A)→ B Dependent Function Type
| λx : A.m Lambda Abstraction
| let x =m in n Let
| mn Function Application
| (x : A)×B Dependent Pair Type
| (m,n) Dependent Pair
| πi(m) Pair Projection (i = 1,2)
| A+B Coproduct Type
| ini(m) Injection (i = 1,2)
| case m. z.A of (x.n1|y.n2) (Dependent) Coproduct Eliminator
| m = n Identity Type
| refl Reflexivity
| subst m n Substitution
| µα.[β]m Context Control
| µα.[top]n Context Control
| ⊥ Empty Type
| 1 Unit Type
| 〈〉 Element of Unit Type
| Ui Type Universe (i = 1,2, . . . )

We usually use A,B, . . . to denote types specifically, and t,u, . . . ,m,n, . . . for general terms (that
may or may not be types). x,y,z are reserved for variables. We will often write about terms of the
form µα.[β]m, but, unless otherwise stated, the discussions will also apply to terms of the form
µα.[top]m

The normal forms of the calulus are easy to derive by inspection of the reduction rules (seen
in Section 7.2.2), and avoiding redexes:

Definition 7.3: ECCµ Normal Forms

n,N ::= x | ⊥ | 1 | 〈〉 | Ui
| (x :N1)→N2 | (x :N1)×N2 | N1 +N2 | n1 = n2
| λx : A.n | (n1,n2) | ini(n) | refl
| µα[β]n (n , µδ.n′)
| case n . z.N of (x1.n1|x2.n2) (n , ini(n′),µα.n′)
| πi(n) (n , (n1,n2),µα.n′)
| xn1 · · ·nk (ni , µα.n′)
| subst n1 n2 (n1 , refl)

The values of the calculus are standard, and can be seen as a generalisation of those in [38]. We
use the intuition given in [68], that constructors are values only when their arguments are values,
and that data types are always values. As we can see dependent function types and dependent
pair types as data types, we can view them as always being values. Importantly, eliminators
are not values, which is why we don’t have applications, projections, subst or case analysis in
the values. The definition we present is obtained by generalising [38], using [68] and guided by
[53].

Definition 7.4: ECCµ Values

v,V ::= x | ⊥ | 1 | 〈〉 | Ui
| (x : A)→ B | (x : A)×B | A+B | m = n
| λx : A.m | (v1,v2) | ini(v) | refl

With a definition of values, we have the call-by-value evaluation contexts, which we obtain by
generalising those of [38], guided by those of [68, 6].
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Definition 7.5: ECCµ CBV Evaluation Contexts

κ ::= • | κm | vκ | µα.[β]κ
| ini(κ) | (κ,m) | (V ,κ)
| case κ . z.A of (x1.n1|x2.n2) | πi(κ) | subst κ m
| let x = κ in m

We obtain the definitions of nef terms by generalising those of [38], guided by the work in
[53]:

Definition 7.6: ECCµ Negative Elimination Free Terms

m
nef
,n

nef
,A

nef
,B

nef
::= x | ⊥ | 1 | 〈〉 | Ui
| (x : A

nef
)→ B

nef
| λx : A.m | let x =m

nef
in n

nef

| (x : A
nef

)×B
nef
| (m

nef
,n

nef
) | πi(mnef

)
| A

nef
+B

nef
| ini(mnef

) | case m
nef

. z.A of (x.n1nef|y.n2nef)
| m

nef
= n

nef
| refl | subst m

nef
n
nef

Note that, as in dPAω, m need not be nef for λx : A.m to be nef.

7.2.2 Reductions

As the calculus is built as an extension to dPAω, we retain its call-by-value reduction strategy
[38]. We also allow the left and right µ-reduction, as the evaluation is deterministic under the
call-by-value strategy. The full set of reductions can be found in B.2. The reductions to highlight
are:

(λx.m)n →β let x = n in m, (m , µα.m′)
let x = v in m → m[v/x]

v(µα.m) →µ′ µα.m[[α]v • /[α]•]
(µα.m)n → µα.m[[α] •n/[α]•]

Crucially, we prioritise (left) µ′ reduction over β-reduction; this is to preserve the CBV nature
of the calculus. Without this prioritisation, we lose the CBV nature of reductions; if v = λx.n, then
we would have a critical pair, (λx.n)(µα.m). This is similar to the issues seen in the λµµ̃-calculus
[20], in which they argue that CBV is gained by prioritising the right reduction1. The key idea
is that the argument µα.m is evaluated before being given to λx.n. Using our CBV evaluation
contexts, we can succinctly write the µ reductions as

κ{µα.m} → µα.m[[α]κ{n}/[α]n]

expressing how the µ and [·] operators control the context.

7.2.3 Type Assignments

The type assignments are similar to those in [53], and are essentially a combination ECC and a
collapsed dPAω. The main difference with ECC is the addition of control and that dependent
eliminations can only be used for nef terms. The difference with ECCK[53] is the addition of
coproducts. Note that nef terms are allowed to have types that are not nef, and we still allow
such terms to be used in dependent elimination.

1In their calculus, this is similar to prioritising the µ reduction over the µ̃; µ̃ reduction is similar to the left reduction
of our calculus.
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Definition 7.7: ECCµ [38, 53]

Valid Contexts

(·)
∅ ` · | ∅

Γ ` A : Ui | ∆ (Ax)
Γ ,x : A ` x : A | ∆

Γ ` A : Ui | ∆ (αx)
Γ ` · | α : A ∆

Function Introduction/Formation

Γ ,x : A `m : B | ∆
(→ I)

Γ ` λx.m : (x : A)→ B | ∆
Γ ` A : Ui | ∆ Γ ,x : A ` B : Uj | ∆

(Π)
Γ ` (x : A)→ B : Uitj | ∆

Pair Introduction/Formation

Γ `m : A | ∆ Γ ` n : B[m/x] | ∆
(×I)

Γ ` (m,n) : (x : A)×B | ∆
Γ ` A : Ui | ∆ Γ ,x : A ` B : Uj | ∆

(Σ)
Γ ` (x : A)×B : Uitj | ∆

Coproduct Introduction/Formation

Γ `m : Ai | ∆ Γ ` A1 : Uj | ∆ Γ ` A2 : Uj | ∆
(+Ii )

Γ ` ini (m) : A1 +A2 | ∆
Γ ` A : Ui | ∆ Γ ` B : Ui | ∆ (+F)

Γ ` A+B : Ui | ∆

Non-Dependent Elimination

Γ `m : A→ B | ∆ Γ ` n : A | ∆
(→ E)

Γ `mn : B | ∆
Γ `m : A | ∆ Γ ,x : A ` n : B | ∆ x < fv(B)

(let)
Γ ` let x =m in n : B | ∆

Γ `m : (x : A)×B | ∆ x < fv(B)
(×E1)

Γ ` π1(m) : A | ∆
Γ `m : (x : A)×B | ∆ x < fv(B)

(×E2)
Γ ` π2(m) : B | ∆

Γ `m : A+B | ∆
z < fv(C)

Γ ` C : Ui | ∆ Γ ,x : A ` n1 : C | ∆ Γ , y : B ` n2 : C | ∆
(+E)

Γ ` case m. z.C of (x.n1|y.n2) : C | ∆

Dependent Elimination

Γ `m : (x : A)→ B | ∆ Γ `nef n : A | ∆
(→ Ed )

Γ `mn : B[n/x] | ∆
Γ `nef m : A | ∆ Γ ,x : A ` n : B | ∆

(letd )
Γ ` let x =m in n : B[m/x] | ∆

Γ `nef m : (x : A)×B | ∆
(×Ed1 )

Γ ` π1(m) : A | ∆
Γ `nef m : (x : A)×B | ∆

(×Ed2 )
Γ ` π2(m) : B[π1(m)/x] | ∆

Γ `nef m : A+B | ∆
Γ , z : A+B ` C : Ui | ∆

Γ ,x : A ` n1 : C[in1(x)/z] | ∆ Γ , y : B ` n2 : C[in2(y)/z] | ∆
(+Ed )

Γ ` case m. z.C of (x.n1|y.n2) : C[m/z] | ∆

NEF

Γ `m : A | ∆ m ∈ nef
(nefI)

Γ `nef m : A | ∆
Γ `nef m : A | ∆

(nefE)
Γ `m : A | ∆

Control

Γ `m : 0 | α : A,∆
(µ)

Γ ` µα.m : A | ∆
Γ `m : A | ∆

(name)
Γ ` [α]m : 0 | α : A,∆

Γ `m : 0 | ∆
(top)

Γ ` [top]m : 0 | ∆
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Types

(1)
Γ ` 1 : Ui | ∆

(0)
Γ ` 0 : Ui | ∆

(unit)
Γ ` 〈〉 : 1 | ∆

(Ui )
Γ ` Ui : Ui+1 | ∆

Propositions

(P)
Γ ` P : U0 | ∆

Γ ` A : Ui | ∆ Γ ,x : A ` B : P | ∆
(ΠP)

Γ ` (x : A)→ B : P | ∆

Equality

Γ ` A : Ui | ∆ Γ `m : A | ∆
(refl)

Γ ` refl :m =A m | ∆
Γ ` A : Ui | ∆ Γ ` a : A | ∆ Γ ` b : A | ∆

(=)
Γ ` a =A b : Ui | ∆

Γ ,x : A ` B : Ui | ∆ Γ ` n : B[P /x] | ∆ Γ `m : P =Q | ∆
(subst)

Γ ` subst m n : B[Q/x] | ∆

Propositions

The new type, P represents the impredicative set of logical propositions [45]. An impredicative
definition is one that is self-referencing; in our case, it means that the set of propositions P is
defined in terms of itself [45]. What separates this set from the usual types is the rule (ΠP),
which characterises the type P, where functions whose codomain is a proposition are themselves
propositions.

Context Control

dPAω and ECCK use catch and throw control operators (dPAω also has exfalso), rather than µ and
[·]. We can recover µα.[β]m by encoding them as catchα (throw β m), effectively reversing the
intuition Herbelin gives in [38, p4] explaining catchα m is roughly equivalent to µα.[α]m, and
throw α m to µδ.[α]m (with δ not free in m)2. Thus our encoding seems sound, as

catchα (throw β m) 7→ µα.[α](µδ.[β]m)→ µα.[β]m

We are also able to recover exfalso m by µδ.[top]m (with δ < fv(m)).

Dependent Coproducts

In Herbelin’s original formulation of dPAω, case terms were defined via pattern matched methods.
Although this doesn’t let us consider terms of the form case m of (p|q), it allows us to determine
when such a term is nef.

If we did consider terms case m of (p|q), the naïve condition for a case construct to be nef

would be: case m
nef

of (p
nef
|q
nef

) ∈ nef. If, however, m = in1(n), the term would reduce to pn. If
p is of the form λx.p′ , which is nef, then pn→ p′[n/x], which we don’t know to be nef. It follows
that we must know when the subterm p′ is nef, in order to determine when the original is nef.
If we force the syntax to always have the form case m of (x.p|y.q), then we are always able to
determine whether or not the term is nef.

7.2.4 Properties

We maintain the closure of nef terms under substitution and reductions from dPAω.

2This does require we allow the symmetric µ reduction, or we consider dPAω with the control operators only allowed
to capture the right context
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Lemma 7.8: nef Substitution/Reduction Closure =⇒ Proof in B.1

(i) m,n ∈ nef =⇒ m[n/x] ∈ nef

(ii) m ∈ nef and m→∗ n =⇒ n ∈ nef

A term substitution lemma is usually used to prove subject reduction. However, a naive
substitution lemma is not provable; consider m = π1(x,refl) : x =A x, for some x : A. If n : A
and n < nef, then m[n/x] = π1(n,refl) is not typeable. This problem is avoided by the fact that
our reductions are CBV, so we know we will only be substituting values; and all values are nef,
thus the substitutions in the dependent eliminations will still be safe.

Lemma 7.9: Term Substitution =⇒ Proof in B.1

If there is a type C such that Γ ,x : C `m : A | ∆ and Γ `
nef

n : C | ∆, then

Γ [n/x] `m[n/x] : A[n/x] | ∆[n/x]

Proposition 7.10: Subject Reduction =⇒ Proof in B.1

If Γ `m : A | ∆ and m→ n, then Γ ` n : A | ∆.

We claim consistency of the calculus by sketching a proof of translations to and from ECCK.

Claim 7.11: ECCµ Consistency

There is no term t such that ` t :⊥

Proof. (Sketch) We encode ECCµ into ECCK by:

VA+BU = (b : B)× (if b then A else B)
Vin1(m)U = (true,m)
Vin2(m)U = (false,m)

Vµα.[β]mU = catchα throw β m
VmU = V·U applied recursively to the subterms of m

With the reverse translation given by:

VBU = 1 + 1
VtrueU = in1(〈〉)

VfalseU = in2(〈〉)
Vif b then m else nU = case VbU . z.VBU of (VmU|VnU)

Vcatchα mU = µα.[α]m
Vthrow α mU = µδ.[α]m δ < fn(m)
Vexfalso mU = µδ.[top]m δ < fn(m)

VmU = V·U applied recursively to the subterms of m

We then use the fact that ECCK is consistent [53].

Perhaps important to note is that well-typed normal forms are values.

Lemma 7.12: Proof in =⇒ B.1

If n ∈ nf and there is a type A such that ` n : A, then n is a value.

7.3 Dependent Algebraic Data Types

In this section, we generalise the results for coproducts and dependent pairs to inductive families
and inductive records.
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As the author found towards the end of this project, work has been done by Lepigre in [43]
combining data and records with λµ. Their system allows for simple, non-parameterised data and
record types. Where we restrict to nef terms in type assignments, they restrict to values. Lepigre
explains that, from the user’s perspective, the value restriction isn’t an issue, as one can derive
similar rules for non-values by reducing them to normal values before checking their types. Of
course this then requires an additional termination check to be made on the term. As it turns out,
most of the restrictions to values can simply be replaced by the more flexible restriction to nef

terms; this can be seen by just comparing the two type systems.

7.3.1 Inductive Families

The intuition behind extending the calculus to inductive families is in how they are a generalisation
of coproduct types.

We have inductive family definitions:

data D (σ :: P ) : (α :: I) −→ Ui where
n∑
i=1

ci : (~Ai)(~Bi) −→D σ ~si

With standard syntax given by:

m,n,A,B ::= . . . | Dσ (α) | ci
| elim m. z.C by (x1.n1| · · · |xk .nk) | case m. z.C of (x1.n1| · · · |xk .nk)

Where xi .ni means xi is a sequence of variables, bound over ni . The elim construct is for
inductive eliminations, that will recurse on the data type. case is for non-recursive elimination,
just like in Haskell. Logically, case relates to not using the inductive hypotheses given by the
constructors.

To allow compatibility with the classical operators, we follow the ideas we set out in 7.1;
namely that the set of nef terms should be closed under reduction, and to use their reductions to
infer when we can allow dependent elimination.

First, we need to know when the new terms are nef. For an instanceDp(q) to be nef, we should
have no subterm able to backtrack, so we need that p and q are sequences of nef terms; this is
similar to when other types are nef.

To allow constructors to form nef terms, we allow their applications to nef terms to be nef.
There are two ways we can argue why this is the case. The first is that our constructors are
a generalisation of the successor function, and we use the definition in 7.1 to say that all the
arithmetical terms of dPAω are nef. Similarly, the constructors are a generalisation of ini(·) in
dPAω, and we have ini(m) ∈ nef only when m ∈ nef. The other perspective is to view them
through their reductions. The arguments of the constructor are only accessible by the inductive
eliminator (elim). We consider the simpler version of the rule (that doesn’t recurse on the inductive
hypotheses), case;

case (ci ~p ~a ~b) of (x1.m1| · · · |xk .mk) −→ let xi =~b ~a ~p in mi

Where let ~x = ~m in n is taken to mean let x1 =m1 in · · ·let xk =mk in n. We know the right
hand side of this equation is nef when ~a,~b,~p and mi ∈ nef, so we carry this requirement over to
the left hand side. Thus, we get case (ci ~p ~a ~b) of (x1.m1| · · · |xk .mk) ∈ nef when ~a,~b,~p,mi ∈ nef.
This implies (by generalising coproducts), that we can consider (ci ~p ~a ~b) to be nef.

Therefore, taking ~m
nef

to mean each mi ∈ nef, we extend nef terms;

m
nef
,n

nef
,A

nef
,B

nef
::= . . . | ci nnef1 . . .nnefp (p = 0,1, . . . )
| elim m

nef
by (x1.nnef1| · · · |xk .nnefk)

| D ~m
nef

(~n
nef

)

We use the rules for validating an inductive definition from 5.17, and the rules for formation
and introduction from 5.19.

We inspect the reduction rule for when to allow dependent elimination;
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elim (ci ~p ~a ~b) by (x1.m1| · · · |xk .mk)

−→ let xi = ~p ~a ~b
(
~w.(elim b1 ~w by ~m)

)
· · ·

(
~w.(elim bn ~w by ~m)

)
in mi

We see that elim reduces to a let expression, so we use the rule for when we allow dependent let
binding. In particular, we must have ~a,~b ∈ nef, and also each of ~w.(elim bj ~w by ~m) ∈ nef. This
suggests that a general target t of elimination must be nef.

As the recursive terms are under a binder we might be able to immediately determine them
nef. However, we must take care in the case that ~w is empty; as we then directly have the operand
(elim bj by ~m), so we must have it be nef. In this case, by the definition of when elim is nef, we
must have all the methods mi ∈ nef.

So we have multiple cases for when we allow dependent elimination: if the data type has no
recursive occurrences in its constructors, we only need the arguments to the constructor, a and b,
and the target term t to be nef; if the data type has a constructor with a recursive argument, then
we need a,b, tnef and also each minef; if the constructors only contain arguments that compute
to a recursive argument, then we get the same as if it has no recursive arguments.

By enforcing pattern matching of the methods, by making them of the form xi .mi , it is possible
to determine when the methods are nef, and we are then able to determine the dependent
elimination typing rule:

Definition 7.13: Inductive Family Pattern Matched Dependent Elimination

Γ `
nef

t :D p q | ∆
Γ , (x :D p q), (y :: P ), (z :: I) ` C : Ui | ∆
Γ , ~xi :: (p :: P )(a :: Ai)(b :: Bi)(v :: Vi) `nef mi : C((ci p a b),p,~si) | ∆

(elimd)
Γ ` elim t by (~x1.m1| · · · |~xn.mn) : C(t,p,q) | ∆

Where we write C(t,p,q) to mean C[t/x,p/y,q/z].

In the simpler case construct, the reductions is of the form:

case (ci ~p ~a ~b) of ((x1.m1| · · · |xk .mk)) −→ let xi = ~p ~a ~b in mi ,

which suggests we only need the target t to be nef;

Definition 7.14: Inductive Family Dependent Case Analysis

Γ `
nef

t :D p q | ∆
Γ , (x :D p q), (y :: P ), (z :: I) ` C : Ui | ∆
Γ , ~xi : (p :: P )(a :: Ai)(b :: Bi) `mi : C((ci p a b),p,~si) | ∆

(cased)
Γ ` case t of (~x1.m1| · · · |~xn.mn) : C(t,p,q) | ∆

Where we write C(t,p,q) to mean C[t/x,p/y,q/z].

In the non-dependent elimination, we can use the usual typing;

Definition 7.15: Inductive Family Non-Dependent Elimination [14]

Γ ` t :D p q | ∆ Γ ` C : Ui | ∆ Γ , ~xi :: (p :: P )(a :: Ai)(b :: Bi)(v :: Vi) `mi : C | ∆
(elim)

Γ ` elim t by (~x1.m1| · · · |~xn.mn) : C | ∆
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7.3.2 Inductive Records

Inductive records allow for projections to depend on one another. There is less legwork for us
to derive these, as they can be encoded via dependent pairs [59]. A simple way to help ensure
termination is for projections to only be able to depend on those defined previously.

The key idea behind record types is they are ‘dual’ to data types. Where data types are defined
by their constructors, we define record types by their destructors or projections. We can define
simple pairs by the record definition:

record (×) (A : U )(B : A→U ) : U where
π1 : A
π2 : B π1

Note that, as every projection is applied to a term of type A×B, they each have an implicit first
argument of type A×B; so π1 could actually be seen to have the type A×B→ A. We then define
the constructor for pairs (m,n) by how they are projected; π1(m,n) :=m,π2(m,n) := n.

When a record allows recursion, we can generalise them to codata. A canonical example for
codata is a stream; a list with infinite length.

codata Stream (A : Set) : Set where

head : A

tail : Stream A

We can use a stream to create an infinite list of integers, mimicking those in Haskell;

[_..] : Nat -> Stream Nat

head [n..] = n

tail [n..] = [suc n..]

Note that we define the stream by its projections, as opposed to how data is defined by its
constructors. We can understand this by the idea that we define data by how it is constructed,
and codata by how it behaves under its projections.

Thus we generalise products to records. A recursive record R with parameters (σ :: P ) is
defined by;

record R (σ :: P ) : (α :: I) −→ Ui where
k�
i=1

pi : Ai

where Ai is strictly positive wrt R, and fv(Ai) ⊆ σ . We let x1, . . .xi−1 be the free variables in Ai . We
extend the syntax similarly to how we did for data types. Of course, a projection might need extra
arguments; for example, we might have a record R (A : U ) with a projection pR : R→ N→ A. Thus
we should to allow the syntax to bind these variables over the methods; build(~x1.m1| · · · |~xk .mk).;

m,n,A,B ::= . . . | R ~p ~q | pi( ~m) | build(~x1.n1| . . . |~xk .nk)

We define the nef terms by generalising those of product types. A pair (m,n) is nef when m,n ∈
nef; this can be generalised to build(~x1.m1| · · · |~xk .mk) ∈ nef for mi ∈ nef.

m
nef
,n

nef
,A

nef
,B

nef
::= . . . | pi(mnef

)
| build(~x1.nnef1| . . . |~xn.nnefk)

For a record instance R ~p to be nef, we impose the same restriction as for data types; that each
Ai ∈ nef and ~pi ∈ nef.
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Definition 7.16: Record Declaration

record
Γ ` (σ :: P ) :: Ui | ∆ Γ , (σ :: P ) ` (α :: I) :: Ui | ∆

Γ ` R (σ :: P ) (α :: I) : Ui | ∆

where
Γ ,p1 : R σ α→ A1, . . . ,pi−1 : R σ α→ Ai−1 ` Ai : Uj | ∆

Γ ` pi : R σ α −→ Ai | ∆

The formation of record instances is very similar to that for data instances. The build construct
is typed as a generalisation of the pairing construct (·, ·); where the type of each successive term
is dependent on the previous terms.

Definition 7.17: Record Formation/Introduction

Given a valid record declaration R (σ :: P ) : (α :: I) → Ui in the environment, we check
instances of the type and introductions, where p and q are vectors of terms, by;

Γ ` p :: P | ∆ Γ ` q :: I[p/σ ] | ∆
(record)

Γ ` R p q : Ui | ∆

Γ ` R p q : Ui | ∆
Γ ` y1.n1 : A1[p/σ ,q/α] | ∆ · · · Γ ` yk .nk : Ak[p/σ ,q/α][n1/x1, . . . ,nk−1/xk−1] | ∆

(buildR)
Γ ` build R p q with (y1.n1| . . . |yk .nk) : R p q | ∆

The typing for yi .ni means thatAi is of the formAi1→ Ain, where the length of the variable
vector yi is n− 1. In the derivation then, it is typed by:

Γ , yi1 : Ai1, . . . , yi(n−1) : Ai(n−1) ` ni : Ain | ∆
Γ ` yi .ni : Ai | ∆

The projections are a generalisation of the pair projections.

Definition 7.18: Record Projection

For t and u term vectors;

Γ `m : R t u | ∆ Γ ` R t u : Ui | ∆ xj < fv(Ai) for j = 1, . . . , (i − 1)
(pi)

Γ ` pi(m) : Ai[t/σ ,u/α] | ∆

Γ `
nef

m : R t u | ∆ Γ ` R t u : Ui | ∆ (pdi )
Γ ` pi(m) : Ai[t/σ ,u/α][p1m/x1, . . . ,pi−1m/xi−1] | ∆

7.3.3 Reductions for (Co)Inductive Types

For the inductive data types, the reductions are similar those seen in Chapter 5, although presented
in a call-by-value fashion. The main difference is that the methods are pattern matched on the
parameters and arguments to the constructor; this allows us to identify when the resulting term
is nef, and preserve the whether or not the target is nef after reduction. The alternative would
be allowing the methods to be functions that accept the parameters and arguments, but then the
case analysis would reduce to a function application, which could not be nef. This means we
would lose the closure of nef terms under reduction; a property we very much want to keep.

elim (ci ~p ~a ~b) by ~x. ~m −→ let ~x = ~a ~b
(
~w.(elim b1 ~w by ~m)

)
· · ·

(
~w.(elim bn ~w by ~m)

)
in mi

case (ci ~p ~a ~b) of (~x. ~m) −→ let ~x = ~p ~a ~b in mi
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Where writing ~x = ~m ~nmeans the sequence of variables ~x is of the same length as the sequence
~m ~n, and each xi is bound to the corresponding term on the right hand side.

Lazy Evaluation

A call-by-value strategy will not work for coinductive records; they represent (potentially) infinite
objects, so we cannot evaluate each of its components in advance [38]. Thus, viewing coinductive
records as a generalisation of the corecursive fixpoint cofix of [38], we need to use a lazy evaluation
strategy, so that we only evaluate as much of the infinite object we need. Following [38], this also
requires the introduction of specific contexts for lazy evaluation, that we label L.

Definition 7.19: Lazy Evaluation Contexts

L ::= • | L{κ} | let x = build(~x1.n1| · · · |~xk .nk) in L

We generalise the lazy reduction rules of the cofix operator of dPAω[38];

κ{build(y1.n1| · · · |yk .nk)} −→ let x = build(y1.n1| · · · |yk .nk) in κ{x}
κ{let x = build(y1.n1| · · · |yk .nk) in m} −→ let x = build(y1.n1| · · · |yk .nk) in κ{m}

let x = build(y1.n1| · · · |yk .nk) in L{pi (x ~m)} −→ let yi = ~m,x = ni in L{x}
let x = build(y1.n1| · · · |yk .nk) in µα.[β]m −→ µα.[β]let x = build(y1.n1| · · · |yk .nk) in m

The way in which these rules achieve lazy evaluation is well explained by Miquey [52, p112]:
The first two rules highlight that, when we reach a coinductive structure in a call-by-value context,
we delay its computation by abstracting it, or keeping it abstracted, under a let expression variable;
the third rule precisely corresponds to when the coinductive structure is linked to x, whose value
is needed, so a single evaluation step is performed. The last reduction describes how control
operators interact with coinductive structures.

7.4 Typing Algorithm

7.4.1 Weak Head Normal Form

We make extensive use of terms that are in weak head normal form (whnf). We obtain the definitions
of whnf by combining those of [59] (for dependent types) and [10] (for µ-terms).

As described in3, the idea of whnf is that the term has been evaluated to the outermost data
constructor or lambda abstraction. The fundamental idea is the ‘head’ of the term isn’t reducible.
For weak head normal forms not immediately in the litreature, we use the notion from Peyton
[63, p198]; that in a term of the form f e1 . . . en, with n ≥ 0, we must have: either f is a variable or
data object; or f is a lambda abstraction and n = 0; or f is a built in function such that f e1 . . . em is
not a redex for m ≤ n.

For our syntax, we consider (·, ·),ini(·), (×), and (→) to be data constructors, so these are already
in whnf. πi and case are eliminators, so we need to interpret them as built-in functions. As the
idea of whnf is we want the head of the term to dictate its behaviour, we need to make sure the
eliminators don’t reduce. For terms of the form πi(m), which reduces (for m → (n1,n2)) to ni .
Thus, we want to make sure m doesn’t reduce to a pair, so we need it to be in whnf and that it
isn’t a pair. Similarly, for case m.C of (n1|n2)→ ni , we need m to be whnf but not of the form
ini(n).

For equality, a term refl is already in normal form. For substm n, we have a reduction (when
m = refl) to n; so is only in whnf when this is not the case; we can ensure this by having m be
whnf and not refl.

To determine when a µ term is in whnf, we use the work in [10]: for a term µα.[β]m to be
in normal form, we need to disallow reductions on the head. If α = β, and α < fn(m), then we
can apply the (µη) rule; so we certainly need either (α , β, or α ∈ fn(H) in order for the term to
be in whnf. The other case to consider is the renaming reduction; when m = µγ.[δ]m′), we are

3https://stackoverflow.com/questions/6872898/what-is-weak-head-normal-form
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able to reduce the term by µα.[β]µγ.[δ]m′ → µα.[δ]m′[β/γ]. Thus, we must have the subterm
m , µγ.[δ]m′ . For the subterm itself, m, we need it to be in whnf.

The whnf definition also needs to respect the various µ reductions. For example, a term
πi(µα.M) is (head) reducible, so this is not in whnf.

The constants are trivially in whnf, so we can give a full definition;

Definition 7.20: Weak Head Normal Form Terms [10, 59]

H ::= x | λx.t | (m,n) | ini(m) | refl
| Hm1 . . .mn (H , λx.m and H , µα.m)
| πi(H) (H , (m,n), (µα.m))
| case H . z.C of (x1.n1|x2.n2) (H , ini(m), (µα.m))
| µα.[β]H (α , β, or α ∈ fn(H);H , µγ.[δ]m)
| subst H m (H , refl, (µα.n))
| (x : A)→ B | (x : A)×B | A+B
| 〈〉 | 1 | 0 | Ui

7.4.2 Bidirectional Algorithm

We have two types of judgements in this system [59]:

Γ `m⇒ A | ∆ . t (Type Inference)
Γ `m⇐ A | ∆ . t (Type Checking)

Which we read: infer the type A for m, with output t; and check the type A against the term
m, with output t. During the typing algorithm, the terms are sometimes (partially) evaluated to
check their weak-head normal form or if they’re nef; this evaluated term is given by the output t.

The intuition behind the notation is that: for type inference, the type is inferred from the term,
so the arrow goes from the term to the type; for type checking, the type is known, and checked
against the term.

The bidirectional algorithm itself is largely standard, and is mostly guided by [59], with
similarities to those in [47, 79, 64]. We highlight the new rules; the full presentation (including
subtyping rules) can be seen in B.3. The rules for eliminations are split into their dependent and
non-dependent versions, with the appropriate nef checks, otherwise they are much the same as
those in [59] and [64].

Soundness of the algorithm (wrt the type system) comes from the nature of bidirectional
algorithms; it is directly derived from the type system. We certainly do not have completeness
with this algorithm; in general, we can only type terms when we are given the initial type to
check, and the term is in weak head normal form. Although this seems restrictive, this is in fact
the usual case for type checking; as we define a function by declaring its type and then giving an
inhabiting term.

Control

To type a (µ) term, we need to add the assignment α : A to the co-context. This means we have to
know the type A before the typing, so the (µ) rule must be a type checking rule, so that it can be
given the type A as input.

Γ `m⇐ 0 | α : A,∆ . t
(µ)

Γ ` µα.m⇐ A | ∆ . µα.t

As for the (name) rule, it’s in fact quite similar to the (→ E) rule4. As we must already know
the type of α (else it is not bound in the term) and top, we only need to check thatm has a matches
that type.

Γ `m⇐ A | ∆ . t
(name)

Γ ` [α]m⇒ 0 | α : A,∆ . [α]t
Γ `m⇐ 0 | ∆ . t

(top)
Γ ` [top]m⇒ 0 | ∆ . [top]t

4This intuition came from how the νλµ calculus views a term [α]M as a ‘continuation application’, so can be seen as a
modified form of application [70]
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7.4.3 nef Rules

These rules are written with�, which can be replaced with either⇒ or⇐; meaning we can check
a term is nef whilst checking it against, or inferring, a type. The simplest way to implement this
rule is to just check if the given term, m, is nef.

m ∈ nef Γ `m�A | ∆ . t
(nefI)

Γ `
nef

m�A | ∆ . t
Γ `

nef
m�A | ∆ . t

(nefE)
Γ `m�A | ∆ . t

rnef

From the user’s perspective, however, this can lead to a very restrictive language. A simple
example is to consider the term M := m (n p), with m : (x : A) → B. For M to be typeable, we
must have (n p) ∈ nef, but an application can’t be nef. If we know n is of the form x.n′ , and that
n′ ,p ∈ nef then n p→ n′[p/x] ∈ nef. In this case, M→m n′[p/x], which is typeable in our system.
This motivates the need to consider the class of terms rnef; terms that reduce to nef terms.

Definition 7.21: rnef

We say m ∈ rnef (nef-reducible) when there exists a term n ∈ nef such that m→∗ n.

We could now consider the rule;

m→∗ n ∈ nef Γ ` n�A | ∆ . t
(nefI)

Γ `
nef

m�A | ∆ . t

This idea is explored by Lepigre in [43], where they have a value restriction for their dependent
typings; they suggest allowing the user to write a non-value term, and then have an elaborator
that attempts to normalise the term to a value. This of course needs some susbsystem that checks
if a term is normalising [43] (which must be a conservative check, as this is undecideable in
general [73]).

Performing an evaluation that the user doesn’t see could lead to a disconnect between what
the user intends to mean with a term, and what type is actually derived. We give an example to
explain this, based on a modification of Herbelin’s term used to show the degeneracy of dependent
pairs in [39].

Example 7.4.1. Consider P := µα.[α]((0,0),µδ.[α]((1,1), (refl,refl))). We could have π1(P )→
(0,0) : N ×N, but π2(P )→ (refl,refl) cannot be typed, as P < nef, and P is in normal form,
so there isn’t a P ′ such that P ′ ∈ nef. In the naive system, this would be typed by π2(P ) →
(refl,refl) : (0 = 1)× (0 = 1)

If we now consider πi(π2(P )), observe that πi(π2(P ))→ πi(refl,refl).
Of course this term is now typeable, and would have the type (1 = 1)×(1 = 1); this mightn’t

be immediately obvious to the user.

To avoid allowing terms like this to be rnef, we might have to consider a reduction→ µ, which
stands for the usual reduction relation→, without the µ-reduction (structural reduction). Then,
we would check m ∈ rnef if there is some n ∈ nef such that m→ µn.

nef and rnef Functions

We obviously want users to be able to define functions. If we use the simple nef rule when type
checking, we get a similar problem as above when using a function as an argument. A trivial
example is id x = x. If we naively use the definition of nef, then we could consider id x ∈ rnef.
But it should be obvious that when applied to a termm, we only have idm ∈ rnef whenm ∈ rnef.

Generalising, consider a user-defined function f : (x : A) → B (where A : U ,B : A → U ). We
now consider the term P := m (f a), where m : (y : B x)→ C, C : (B x)→ U . If y occurs free in C,
then we must have (f a) ∈ rnef. How can we check this?

The most simple solution is to simply evaluate f a to rnef using the definition of f . During
type-checking, f is effectively inlined every time it appears in the term being checked – this makes
type-checking a slow operation.
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Instead of a termination checking algorithm, we have briefly explored an alternative way to
check rnef. We consider our usual type system and algorithm, as well as a ‘naive’ type system
and algorithm that are exactly the same, except the the nef rules, which always say a term is nef:

Γ `m : A | ∆
(nefI ′)

Γ `
nef

m : A | ∆

The idea is to first type-check a termm in the naive system, and ifm passes the check, normalisem
to n, and then perform the type check on the n (if n is nef, else fail). This relies on the (unproven)
property that well-typed terms are normalising in the naive system. This would be a reasonable
assumption to make, as any well-typed term in (non-classical) ECC is known to be normalising
[45, chp4, p100], although this would certainly be complicated by the control operators and, if
included, the coinductive structures.
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8 | Implementation

At the beginning of this project, implementation of even just a propositional theorem prover
seemed daunting; how do we represent variables, or check names are fresh? What’s a monad?
Fortunately, there are many fantastic learning resources focused specifically on the implementation
of (dependently) typed functional languages, not just the theory they’re based on. In particular,
the author found the lecture series ‘Designing Dependently-Typed Programming Languages’ [78]
(with the code in [79]) incredibly useful – and we recommend the interested reader check it out.

For a high level overview of our implementations, we describe a typical REPL cycle given by
Figure 8.1.

Parse to AST The user-level syntax is parsed to our AST representation. This desugars some of
the syntax, for example, a lambda expression \ x y -> ... is converted to a representation Lam

x (Lam y ...). This intermediate stage keeps some syntactic sugar, in particular for negation
¬A, and if and only if; A <-> B.

To Core Syntax The AST is then converted to the core term representation, where variable
names are converted strings to the VName type, which, using the unbound library, lets us bind
names appropriately.

Typecheck The type-checking algorithm for each language is used here. It works by sequentially
type-checking the declarations, and then adding them to the context if checking succeeds, or
throwing an error if checking fails.

Update Context The context that the user can reference in the interactive commands is updated
with the definitions in the current file.

Prepare Results Depending on what command the user gave, the output of the type-checking
will be prepared by pretty printing. If the user type-checked a file, then the REPL will report back
any holes left by the user. If the user asked to type check a term, then its (pretty-printed) type
will be returned. When an error is thrown for any command, the REPL is able to print this nicely
back to the user. Errors can occur during parsing and typechecking, and this is made apparent to
the user.

We also describe the two typechecking cycles, given in Figures 8.2 and 8.3:

Cycle for Propositional Prover For a declaration f : A, f = m, the Principal Type algorithm
will infer the type of m, that we will call B. Instantiate to Signature will then attempt to apply
substitutions to B to instantiate it to A. If successful, then f : A is added to the context, and the
algorithm will type the next declaration. Once all declarations are type-checked, or if an error is
thrown, the typechecking exits.

Cycle for Dependent Prover For a declaration f : A, f = m, Type Check will execute bi-
directional type checking of m against A. When a term needs to be evaluated to whnf, the algorithm
uses WHNF, which uses the evaluator on the head of the term until it is in whnf, and then returns
it back to the type-checker. If the algorithm needs to check if a term is rnef, then it checks this
through the NEF interface, which uses the same evaluator to try and normalise the term. If the
declaration successfully type checks, then it is added to the context, and the algorithm repeats
on the next declaration. Once all declarations are type-checked, or if an error is thrown, the
typechecking exits.
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Figure 8.1: The main cycle

Figure 8.2: Type checking loop for the propositional prover

Figure 8.3: Type checking loop for the dependently typed prover

57



8.1 Variables and Representing Terms

Throughout the theoretcal discussion, we have been using Barendregt’s convention for free and
bound variable names. This has made our discussions much simpler, as we don’t have to constantly
worry about α-equivalence. When implementing variables in a language, however, this is a
difficult convention to enforce on the user; and α-equivalence for a naive implementation can
be very slow.

Luckily, there are ways to represent terms that avoid these pitfalls, both allowing the user not
to worry about variable capture, and having speedy α-equivalence.

8.1.1 De Bruijn Indices

De Bruijn Indices [26] are a way to represent terms that allows for computationally efficient
checking for α-equivalence. Instead of using unique names to bind variables, we instead have
occurences of variables reference what they are bound by; they are now indices (numbers) referring
to how many binding ‘levels’ their binder is. 0 would represent the closest binder (λ), 1 would
represent the next, and so on. For example, the term λxyz.xz(λw.z) in De Bruijn form is given
by λ(λ(λ 2 0 (λ 1))). As the variables names don’t appear in the terms, we call this a nameless
representation.

The most immediate problem, one might notice, is that these nameless terms aren’t very
readable. Systems using De Bruijn indices will usually have a nameful user language, and then
use the nameless terms under the hood; shielding the user from the nasty numbers.

8.1.2 Unbound – Locally Nameless

We use the library unbound-generics [42], which is based on the work of [80]. It uses a locally
nameless term representation; which marries the nameful and nameless representations. Simply
put, bound variables are represented by de Bruijn indices, and free variables by atoms (usually
strings) [80]. This means our variables and binders have a nameful interface, so the user language
can stay closer to the core language, and it makes the implementation much more intuitive.

The indices are a pair of natural numbers, represented by i@j; representing the jth variable in
the ith binder (this is to allow multiple variables to be bound in a single binder). For example; a
term λxyz.λw.z can be represented by Bind(x,y,z).Bind(w).1@2.

Checking alpha equivalence only needs comparing the structure and the indices, we don’t
need to worry about the actual variable names. For example, Bind(~x).i1@j1 =α Bind(~a).i2@j2 only
requires checking that the telescopes ~x and ~a are of the same length, and that the indices are
equal; i1 = i2, j1 = j2.

The advantage of this method, over simple de Bruijn Indices, is we retain the original variable
names in the binders, which makes it easier to return the terms to the user (e.g. for error
reporting); we can use the same names they originally gave. If the user inputs a term like λx.λx.m,
then unbound is able to generate a fresh name for the second x binding, (and all free occurences
of x in m are bound to this second x), which keeps the binding unambiguous.

When type checking, we need to be able to descend down a bound term. The unbind function
lets us do this by replacing all the bound indices by the (now free) variable being unbound. For
example, for the term Bind(x).Bind(y).1@0 M, calling unbind gives us the variable name x, and
the term Bind(y).x M; note that x is now free in this term. In case we want a binder to carry extra
information (like a type annotation), we can embed this into the binder.

As lambdas (and other similar binding term constructors) a defined via the Bind type constructor,
one cannot descend to the subterm of a lambda without unbinding the term. In our definition
of terms, lambda abstractions have the constructor Lam Bind (VName, Embed TyAnnot) Term;
which means that the variable name (of type VName) is bound over the subterm and the type
annotation is stored along with the variable name, without that name being bound over the
annotation.

A constructed term will pattern match with Lam bnd, where we explicitly have to call unbind
bnd to obtain ((x, unembed -> ma), m). Note that the only way to get to the subterm m is by
unbinding the lambda; this means we can’t descend to subterms without handling the bound
variable, which makes it hard to forget to add their type to the context. To construct a lambda
term, we need have a variable x, an (optional) type annotation ma and a subterm m. Then, we just

58



bind the variable over the subterm (and embed the annotation) by Lam (Bind (x, embed a) m).
The unbound library will then switch free occurences of x in m to be bound, that is, indexed to
point to this current binder. Similar to unpacking a lambda term, we can’t construct a lambda
abstraction without explicitly binding a variable over the subterm.

Another popular variable handling library is bound1. We found this less intuitive, as substitution
was defined via the monad typeclass – which the author wasn’t very experienced with at the start
of this project – and terms are parameterised by the type(s) of their variables. bound also has some
difficulties with telescopes [47, p50], which are needed for data and record definitions, whereas
unbound has support for nested binding (thus telescopes) built in [80, p1]. Put together, this
makes unbound a much more attractive library for implementing a dependently typed language.

8.1.3 Using Unbound

The fantastic thing about the unbound library is that all the machinery we need – term substitution,
free variables, fresh variables, alpha equivalence, etc... – is all handled automatically. All we need
to do is define which parts of our terms are the variables.

After defining variable names by VName, we make our Term and Type data types instances
of the Alpha (for determining two terms/types alpha-equivalent) and Subst (for showing how to
substitute variables for terms/types) classes. Luckily, unbound-generics uses haskell’s GHC.Generics
library to make defining these instances very simple; the Alpha instance can be automatically
derived, and the Subst instance only requires we identify which of our terms are variables, and
it then figures out the rest.

We get all the machinery we need for variables and substitution in 6 lines of haskell;

type VName = Name Term

data Term = Var VName | ...

instance Alpha Term where

instance Subst Term Term where

isvar (Var v) = Just (SubstName v)

isvar _ = Nothing

For readability reasons, we add the type synonym type Type = Term; this makes it easier
to tell what the various functions are doing from their type signatures. For example, our type
checker returns a type (Term, Type), representing a term and its type; this wouldn’t be as
obvious were the type written (Term, Term), even though these are equal.

8.1.4 Structural Substitution

As part of the implementation, we developed a generic structural substitution type class to work
with unbound, as this wasn’t (easily) supported by the library. This was achieved by modifying
a copy of the Subst class, creating a StrSubst class. Instead of a substitution fuction: subst ::

Name b -> b -> a -> a (where a and b in our case are Term), we allow the user to dictate what
happens to the subterm by parsing a function instead of a term. All the user needs to do is say
when a term is a named term via isStrvar.

class StrSubst b a where

strsubst :: Name b -> (b -> b) -> a -> a

isStrvar :: a -> Maybe (StrSubstName a b)

data StrSubstName a b = (a ~ b) => StrSubstName {

strCstrct :: Name b -> a -> a,

strSubVar :: Name b,

strSubTm :: a

}

1https://hackage.haskell.org/package/bound
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Where strSubVar is the field to get the name of a named term, strSubTm returns the sub-
term, strCstrct returns the constructor for the named term. This could be further generalised,
by allowing multiple subterms, and a constructor that uses those multiple subterms; but this
implementation was enough for our purposes.

Following the style of unbound, we also made a structural substitution type class for haskell
generics; GStrSubst. This means that, as Term was an instance of Generic, we get automatically
derived definitions for structural substitution. Our instance for structural substitution, then,
looks like;

instance StrSubst Term Term where

isStrvar (N b m) = Just (StrSubstName N b m)

isStrvar _ = Nothing

subName a b m = N b m

Then, to implement the different structural substitutions, we just pass the term constructor
that will be applied to each subterm;

v(µα.m)→ µα.m[[α]v • /[α]•] =⇒ strsubst a (App v) m

(µα.m)n→ µα.m[[α] •n/[α]•] =⇒ strsubst a (`App` n) m

πi (µα.m)→ µα.m[[α]πi (•)/[α]•] =⇒ strsubst a (Proji) m

case µα.m . z.A of (x1.n1|x2.n2)→
µα.m[[α]case • . z.A of (x1.n1|x2.n2)/[α]•] =⇒ strsubst a (\p -> Case p zA n1 n2) m

8.2 Syntax

8.2.1 Parsing

There are a few lexer/parsers for haskell; including parsec [21], alex/happy [17, 32], BNFC [1]
and megaparsec [22]. Parsec is considered the ‘main’ parsing library for haskell, but it is not
being actively developed. Alex and Happy are another common way to parse in haskell, but they
are written in (slightly) different languages; given the author was also learning a lot of haskell for
this project, learning other languages felt a bit overkill, given the alternatives.

We very briefly tried using the BNFC library [1], which generates a compiler based on a
labelled BNF grammar. At first, this idea seemed very attractive. However, we found it very
difficult to even get the grammar correct, as it didn’t particularly enjoy the haskell-style syntax
we were aiming for. The reliance on its generation also made the workflow slower; each time we
made a change, we had to recompile the parser and test it through either a generated executable
or by calling it from our own code (which was difficult in itself when using the stack tooling).
Given these difficulties, and the lack of up to date documentation, we quickly abandoned this
library.

We settled on megaparsec [22], an active fork of parsec. In addition to its solid foundations in
the well-established parsec library, it had by far the best tutorial we could find out of any of the
parsers2. This let us quickly code up the parsers for both implementations, so we could spend
much more time focusing on the fun stuff.

The parser is built from small combinators defined in the megaparsec library, which are
combined into larger combinators that handle each term/type constructor. In turn, these are
used to create large term and type parsers, which are used in the declaration parsers.

8.2.2 User Syntax

Perhaps the hardest part of the entire project was coming up with an intuitive ascii representation
of µα.[β]m. After a few alternatives (visible in the code’s README), we decided on the syntax
\a : b\. The intuition is that it’s similar to the usuall haskell style for lambda binding, \x −> ... ,
but the ‘:’ represents the ‘switch’ to the name ‘b’. We hope that the reader finds this syntax
agreeable.

2Found here: https://markkarpov.com/tutorial/megaparsec.html

60

https://markkarpov.com/tutorial/megaparsec.html


As for the rest of the syntax, we aimed to mimic that of Agda [60]. The main reason for this
choice is to make it as easy as possible for many users to try out the implementations. It’s also an
attempt not to add to the clutter of similar but different programming languages.

8.2.3 AST and Parser Errors

The input is parsed into an AST, rather than directly into a core term. This allows us to have
some simple syntactic sugar on the user level; in particular, the ↔ and ¬ symbols, and binding
multiple variables under one lambda, like in \x y z −> ... .

The AST is then converted to core syntax under the ASTM monad, which is able to report errors
not immediately picked up by the parser; for example a function signature without a definition
(or vice versa). The monad also passes the source locations of the original code onto the core
syntax, which helps to report more useful errors back to the user if they occur in the type checking
stage.

8.3 Type Checking Monad

Both typing algorithms operate under a monad, TcMonad, that is able to maintain the current
typing environment and type assignments, as well as error reporting. This monad is largely
inspired by the one used in [79].

Errors are reported under the Err data type, which contains the error message and the location
of the error in the source code.

Env is used to represent the current environment: local (variable) type assignments are stored
in ctx; the type assignments of the covariables are in coctx; the types of functions previously
defined and type checked are in globCtx; the source locations of the currently checked terms/types
are in srcLoc.

TcState is used in both provers to keep track of the holes left by the user. In the propositional
prover, it also keeps track of the type substitutions returned from unification.

data Err = Err [SourceLocation] String

data Env = Env {

ctx :: Ctx,

globCtx :: Ctx,

coctx :: CoCtx,

srcLoc :: [SourceLocation]

}

newtype TcState = TcState {

holes :: [FilledHole]

subs :: [TypeSub] -- Only in the Propositional Prover

}

type TcMonad = FreshMT (StateT TcState (ReaderT Env (ExceptT Err IO)))

TcMonad is constructed via various monad transformers; they essentially equip a given monad
with extra functionality. This design builds on the type checking monad of [79].

• The core of the monad is the haskell IO monad; it allows for user input and printing.

• ExceptT equips the IO monad with the ability to catch and throw errors of type Err. This
is especially useful, as we need to be able to form different errors depending on how type
checking has failed.

• ReaderT adds the ability to acces the Env data. Although this might seem stateful, we keep
it under the ReaderT transformer as it has a handy function local, which allows us to make
recursive calls under a modified Env, without changing the Env of the calling function;
for example, when adding the type of a variable to the context, after obtaining it from
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opening a lambda binding. If Env were kept under the StateT transformer, we would have
to manually modify and then unmodify the state on each recursive call.

• StateT allows stateful use of the TcState; letting the type checker modify and access the
state. We use the state to store (checked) function definitions and type signatures, and to
save the record/data types and their constructors/destructors.

• FreshMT is from the unbound library; it allows us to generate fresh (unique) variable names
when needed. This is especially helpful in the principal typing algorithm; which relies very
heavily on fresh variable generation. Under the hood, it keeps track of the lowest index that
hasn’t yet been used, incrementing it each time a fresh name is needed3.

TcMonad has kind * -> *; so it is implicitly parameterised by a type variable. During type
checking, it is typed by what we want the type checking function to return. This issually a pair
(Term, Type); representing a term and its checked type.

8.4 Simply Typed Theorem Prover

We fully implemented the principal pairing algorithm of Chapter 6 as the type system for a
functional language. This was achieved in a little over 2000 lines of Haskell, with the core type-
checking and term represenation implemented in about 1200 lines. The compact nature of this
implementation makes it much simpler to check its correctness. This is a technique employed by
many proof assisstants out there today; to have a small, trusted core that everything else is built
on top and simplifies/is elaborated to [4].

The code reads a lot like Haskell; users declare a function by giving a type signature and then
a definition. The full syntax as BNF can be seen in A.2. Lambda expressions are given by \x

-> m, control expressions, µα.[β]m are given by \a :b\ m – we don’t force the user to use Greek
names for the co-variables. If the same names are used for a lambda and control binding, then
the innermost name is used. For example, in:

f x = \a:_\ \a -> x a

g x = \a -> \a:_\ x a

f will typecheck, as a is bound to the lambda abstraction \a ->. g will not typecheck, as it
is bound by \a :_\; so is seen as a covariable, with type stored in the co-context. This means it
won’t have a type in the current context, and will be seen as out of scope.

8.4.1 Name Polymorhpism and Type Instantiation

axiom : A -> A

axiom x = x

arrE : (A -> B) -> A -> B

arrE = ax

We can see that arrE calls ax with its type instantiated as (A -> B) -> (A -> B). This highlights
a nice feature of the principal pairing algorithm when used for name polymorphism. It’s not
much work (from an implementation perspective) to instantiate the type A -> A to the one needed
– we don’t need an extra subtyping algorithm to check that this instantiation is safe.

In general, the type signature of a name is checked to be valid by trying to instantiate its
principle type to that of the type signature. The instantiation is achieved through a modification
of Robinson’s unification algorithm, only allowing the principal type (and not the type signature)
to have substitutions applied to it. If we call the first argument the scrutinee, and the second
argument the target, we can more precisely say that the instantiation algorithm is achieved by
restricting unify to only allow substitutions to the scrutinee.

3As explained in:
https://hackage.haskell.org/package/unbound-generics-0.4.1/docs/Unbound-Generics-LocallyNameless-Fresh.
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In the case above, when typing arrE, we will get its principal type as A' -> A'. To check this
type against the signature given, we call: instantiate (A' -> A') ((A -> B) -> A -> B).

By using instantiate, and not unify, we avoid allowing the type signature to be more general
than that of the principal type. Indeed, instantiate ((A -> B) -> A -> B) (A' -> A') will
fail, as it will attempt to find instantiate (A -> B) A', which fails; there is no way to apply
substitutions to (A->B), to obtain A'.

8.4.2 Expressing Logic

As the typing algorithm is based in propositional logic, structures like data types and type constants
aren’t present in the language; there wouldn’t really be a way to reason about them. Recursion
isn’t available either, as there are no structures to recurse on.

As a logical system, we are fully able to reason about classical propositional logic. For example,
we are able to prove the law of the excluded middle:

lem : (A + ¬A)

lem = \a:a\ (in2 (\x -> \_:a\ (in1 x)))

We show the encoding of the standard rules for natural deduction in A.2.1.

8.4.3 Diagram

8.5 Dependently Typed Theorem Prover

The implementation of ECCµ is achieved in a little over 3000 lines of Haskell Code. The type
checking and evaluation, under the folder Core, is implemented in around 1500 lines of Haskell.
As explained for the simply typed language, it is ideal that the implementation is small.

The full syntax can be seen in B.5.1, and is reminiscent of Agda’s syntax, with a few minor
differences.

8.5.1 Evaluation

Evaluation is necessary for the type-checking algorithm, in both evaluating to whnf and checking
if terms are rnef. We implemented evaluation by rewriting rules. These were based on unbound’s
Subst type class, which lets us define, for example, reduction of let expressions by:

eval Let bnd = do

((x,m),n) <- unbind bnd

v <- toValue m

return (subst x v n)

which represents the reduction let x = v in n −→ n[v/x]. The structural substitution was
implemented via our StrSubst type class, which we discussed earlier in this chapter.

It should be noted that, while a simple way to implement evaluation, substitution is quite
inefficient. As explained in [47], we could increase performance by normalisation by evaluation
[44], where terms are converted to Haskell values, computed in Haskell, and then turned back
into the terms of the language. Due to time restrictions, we felt that performance wasn’t much of
a priority, so we stuck with the simple (structural) substitution methods for evaluation.

8.5.2 (Co)Data

Unlike in the presentation of Chapter 7, constructors and projectors are not treated as built-in
functions, and are instead represented separately. Crucially, they must be fully applied, and will
produce an error if otherwise. The reasoning behind this is it allows us to distinguish between
generic term application, and constructor/projector application, which in turn lets us identify
when the application of constructors and projectors are nef. This design choice separates it from
Coq and Agda, but with good reason.

Defining data and records is very similar to how one would in Agda:
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data Vector (A : Univ) : (n : Nat) -> Univ where

empty : Vector A 0

cons : (n : Nat)(x : A)(xs : Vec A n) -> Vec A (suc n)

record Stream (A : Univ) : Univ where

head : A

tail : Stream A

The main difference with Agda is that projectors and constructors use telescopes rather than
function types in their definition. This emphasises the fact that constructors aren’t introducing
generic functions to the context, and instead specifically need to be given all their respective
arguments.

Data and record types are handled via case and build trees:

headOrZero : (n : Nat)(A : Univ) -> (Vec A n) -> A

headOrZero n A v = case v of

empty -> 0

cons i x xs -> x

from : Nat -> Stream Nat

from n = build

head -> n

tail -> from (suc n)

Due to the time scope of this project, we were unable to implement termination checkers
for recursive functions, so a user would be able to define a function f = f. As we’ve explained
previously, there are known methods to conservatively check for termination, and, in future, it
will be almost certainly possible to apply these methods to this language.

8.6 REPL

Finally, to encompass the ‘assistant’ aspect of proof assistants, both languages have a REPL that
let the user interact with the type checker through holes.

A user can leave holes in functions by marking them with a number, for example, ?1 marks a
hole with index 1. The indices are used so the user is able to leave multiple holes and know which
type reported by the type checker corresponds with which hole. A simple example of this would
be:

foo : A -> A -> A

foo x = ?0

bar : B -> C -> D

bar x = \y -> ?1

The user can interact with the REPL by loading the file with :l <filename>, and then checking
through the file for holes by the command :r. In our example, the REPL will report back:

Hole 0:

Goal: A -> A

Scope: x:A;

Hole 1:

Goal: D

Scope: {y:C, x:B};

The goal is the type that the term replacing the hole should have, the scope represents the
variables that are in scope at the hole.
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For the propositional language specifically, the user is able to exploit the inference power of
the principal pairing algorithm by asking it to infer the type of a closed term. If a file is loaded,
the user is also able to reference functions in said file:

> :t \x -> \y -> x y

\x -> \y -> x y : (A3 -> A4) -> A3 -> A4

> :t \x -> x x

SourcePos 1:7

Unify: Unable to substitute: type A1 occurs in type A1 -> A2

In the expression: x x

> :t \x -> \y -> foo x

\x -> \y -> foo x : A1 -> A3 -> A1 -> A1

> :t \x -> \y -> in1 (bar x)

\x -> \y -> in1(bar x) : A1 -> A3 -> (C -> D) + A5

On the other hand, the dependently typed language is able to evaluate terms via :e:

> :e (\x -> \y -> y x) foo (\z -> z)

foo

> :e (\a:_\ \x -> y (x, \_:a\ z)) w

\a:_\ \x -> y (x, \_:a\ z w)
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9 | Evaluation

In this chapter, we will evaluate the work we have achieved in this project. We will split our
discussion into theory and implementation for both the propositional and dependent calculi. A
more general point that applies across the project, is perhaps about the disconnect between the
work done for λµN and ECCµ. From the author’s perspective, it felt very much like working on
two different sub-projects. We do think, however, that it was still very much beneficial to have
started the project working on the simply typed λµN , as it allowed us to focus on the control
operators in a familiar setting, without dependent types muddying our intuition.

9.1 λµN

9.1.1 Theory

We successfully found a principal pairing algorithm for the λµ-calculus, as well an extension
to include named functions, product types and sum types. Soundness and completness of the
algorithm were also proved, meaning we can be sure that the algorithm is suitable for checking
proofs of statements in propositional logic. Using a principal pairing algorithm, as apposed to
a bidirectional algorithm, also allows the type for a term to be inferred without any hints; this
makes life easier for the user, and also improves readability of definitions.

The addition of name polymorphism to the calculus allows for proving smaller lemmas that
can be re-used in larger proofs, saving the user from having to rewrite the proofs of the lemmas
in order to use them.

The separation of the theoretical work from the implementation has the advantage that the
algorithm for the µ and [·] terms can be used in other languages that are based on principal
pair/type algorithms, like ML.

9.1.2 Implementation

Although the algorithm is able to infer the type of a given term, for ease of parsing the user
must still give a type signature for a function before its definition. From the perspective of the
theory this is an arbitrary limitation, but it is encouraged practice in Haskell-like languages to
define a functions type before its definition. A more practical language would certainly drop this
restriction and let the system infer the type of a function without a signature.

The implementation does not feature program evaluation. This separates it from languages
like Agda, in which files can be executed. This does relegate the prover to only being able to check
that a program is well typed, rather than being able to run said program. We argue that this isn’t
much of an issue; it’s well known how to implement evaluation of λ-calculus terms, and these
ideas should be expandable to λµ-calculus, perhaps using the work behind the call/cc control
operator of the Scheme language.

9.2 ECCµ

9.2.1 Theory

We used the ideas behind ECCK [53] to generalise dPAω to arbitrary types, not just functions on N.
The achievement of the core calculus, when compared with ECCK is the addition of coproducts,
found by generalising those in dPAω. We also generalised dependent pairs and coproducts to
inductive families and records, which allowed us to know when we allowed their dependent
elimination. Put together, this means we have successfully defined an expressive calculus with
dependent types and control operators, capable of reasoning in classical first order logic.

During our work in trying to add coproducts and data types, we devised a technique to reason
about when new term constructs are nef, and when we allow their dependent elimination. To
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check when a term construct c was nef, we looked at its reduction to a term d for which we know
what restrictions we need on d to determine d ∈ nef, and then applied these same restrictions to
c. To check when we allow dependent elimination of these constructs, we checked the conditions
of the reduced term. If our elimination term c reduces to d, we allow c to be typed only when we
allow d to be typed.

For example, to allow coproducts in ECCµ, we checked when we can allow dependent elimin-
ation of coproducts by inspecting the reduction of case constructs. We know that the term
case ini(m) of (x1.p1|x2.p2) will reduce to (xi .pi)m. We also know we allow dependent elimination
of an application tu only when u is nef. Thus, we only allow dependent elimination of coproducts
when the target term is nef. To know when a case construct is nef, we used the fact that
case ini(m) of (x1.p1|x2.p2) will reduce to pi[m/xi], and thus we know, by 7.8, this is nef for
pi and m nef.

We were able to prove important properties of the calculus, in particular subject reduction.
However, our proof of its consistency was only a sketch, and a formal proof is certainly needed.
This would likely rely on a proof that well typed terms in ECCµ are strongly normalising, as this
was used to prove the sequent calculus version of dPAω was normalising [52]. We do already
know that ECC is strongly normalising, and that we are able to encode ECCµ into ECCK, which
in turn can be encoded into a polarised sequent calculus Ldep, which is strongly normalising [53].
However, we haven’t proved that the translation from ECCµ preserves types and reductions, so it
is quite tenuous to assert normalisation of the calculus based on this.

We successfully defined a bidirectional algorithm for ECCµ, including novel rules for typing
the control operators µ and [·]. Bidirectional type checking, although easier to implement, tends
to need a lot more annotations from the user than algorithms based on pattern unification [49, 35],
which are much closer in inference power to the principal pairing algorithm [47]. This does leave
our implementation somewhat weaker in type checking ability than Agda and Coq.

Some Classical Examples

We briefly explore some examples in ECCµ, to see exactly what sort of a logic we can get.
To start with, we are able to prove (lem);

λa.µα.[α]in2(λx.µδ.[α]in1(x)) : (A : U )→ (A+¬A)

This proof holds for arbitrary types A; there is no restriction to, say, A being in P. Certainly, then,
the corresponding logic is classical in nature, suggesting we have stuck to our goal of theorem
proving for classical logic.

More interestingly, we are able to prove the equivalent of the first order classical property:
¬∀w.B→∃w.¬B. The derivation of this type assignment can be found in B.4.

P := λx.µα[top]x(λy.µβ.[α](y,λz.µδ[β]z)) : ¬((w : A)→ B)→ (w : A)×¬B
We are still able to prove the intuitionistic reverse: ∃w.¬B→¬∀w.B:

Q := λxy.π2(x) (y π1(x)) : (w : A)×¬B→¬((w : A)→ B)

Meaning we have the classical notion ∃w.¬B ↔ ¬∀w.B, with the proof given by (Q,P ).This
suggests we do have a calculus capable of classical reasoning in first order logic. Of course, P is
not a nef term, so it is somewhat restricted in where it can be used; for dependent application, it
can only be used as the operator (i.e. the leftmost term in the application).

What is apparent, is that P is a much more complicated term than Q, even though their
canonical proofs in natural deduction are similar in length1;

¬∀x.B(x) ` ¬∀x.B(x)

¬B(a) ` ¬B(a)
B(a) ` ∃x.¬B(x) ¬∃x.¬B(x) ` ¬∃x.¬B(x)

¬B(a),¬∃x.¬B(x) ` ⊥
¬∃x.¬B(x) ` B(a)
¬∃x.¬B(x) ` ∀x.B(x)

¬∀x.B(x),¬∃x.¬B(x) ` ⊥
¬∀x.B(x) ` ∃x.¬B(x)

1These proofs are thanks to [16]
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∃x.¬B(x) ` ∃x.¬B(x)
∃x.¬B(x) ` B(a)

∀x.B(x) ` ∀x.B(x)
∀x.B(x) ` B(a) ¬B(a) ` ¬B(a)

∀x.B(x),¬B(a) ` ⊥
∀x.B(x) ` B(a)

∃x.¬B(x),∀x.B(x) ` ⊥
∃x.¬B(x) ` ¬∀x.B(x)

This stems from the limitation of the λµ-calculus discussed at the end of Chapter 4; we are
only able to use (RAA) on the ‘special’ assumptions. What is certainly worth exploring, is if we
can combine the νλµ-calculus [70] with dependent types in a similar manner to how we did with
λµ. As a rough example, this would let us produce the term:

λxµy.[y](λz.µa.[(z,a)]x) : ¬(w : A)→¬B→ (w : A)×¬B

The derivation of this can be found in B.4. A presentation of the νλµ calculus can be found in
[70, p95].

9.2.2 Implementation

We successfully implemented a language based on ECCµ, allowing for dependently typed func-
tions with control operators to be defined. Looking back to the initial goals of this project,
theorem proving in classical logic, we are very happy that we were able to implement a proof
assisstant for first order classical logic. As well, we are satisfied that the implementation avoids
the issue of degeneracy of the domain of discourse outlined in Chapter 5, as the function:

f : (A : Univ) -> A -> A -> A

f _ x y = proj1(\a:a\(x,\d:a\(y,refl)))

does not pass the type checking process, as the subterm \a :a\ (x,\d :a\ (y,refl)) is
correctly detected to be non-reducible to nef.

There are, however, some important parts of our implementation that are missing due to
time limitations. The type checker for data and record declarations is missing a check for strict
positivity in the constructors/derivations, although we suspect this shoudln’t be too difficult a
check to implement. More difficult issues are the recursion checks and the universe hierarchy;
currently, we allow general recursion, and the universe hierarchy is collapsed to U : U , which we
know to be inconsistent. We discuss how we might rectify these problems in Chapter 11.

Our subsystem for evaluating terms to nef is simple; it just attempts to normalise them. This
of course could lead to a non-terminating compilation process, for example, if it attempts to check
if the term (λx.xx)(λy.yy) evaluates to an nef term. Our solution to this was to first type check
assuming every term is nef and, if the term passes this check, we then type it again, but checking
if terms evaluate to nef (when they need to). This method could be seen as a bit of a ‘hack’, and it
essentially doubles the computational cost of type checking. It also relies on the property that the
naive version of ECCµ (i.e. without the nef checks) is normalising, which remains unproven. To
have a terminating type checker, we either need a proof of normalisation, or use another method
for evaluating to nef entirely.
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10 | Ethical Discussion

As this project is based in a very theoretical area of computer science, there aren’t too many
‘real world’ problems to have to worry about. Our project made no use of human particpants
or personal data, nor does it (immediately) involve developing countries or have environmental
consequences.

The main ethical issue to consider about this project, is that of perhaps any theoretical project;
that the work we have done is correct – especially as our work is closely tied to program verification.
As well as growing use in mathematics, theorem provers see use in industry for verification of
both software and hardware. Any work based on our own here would be tied to any mistakes
we might not have noticed. Thus, we have taken care to explain exactly the properties we
have proven for sure, and those for which we have only been able to claim. Although, as our
implementations are more as a proof of concept, we don’t expect them to see any serious use
industry, at least not before they are greatly expanded upon.
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11 | Conclusion

Following, we will summarise our work in Section 11.1. In Section 11.2 and highlight areas that
could extend and improve upon the theoretical and practical work.

11.1 Review

Our aim was to explore the correspondence of classical logic and computation, and to see if
a theorem prover could be based on this correspondence. This project was undertaken in an
open-ended manner, where we had no specific goal to complete. Instead, our approach was
to work back and forth between study and implementation; both avenues of work ended up
complementing each other nicely.

We explained the differences between intuitionistic and classical logic, and gave an account
of their corresponding calculi. We also gave an account of the λµ-calculus as both a syntax for
describing proofs in classical logic, and as a computational calculus with control operators, with a
particular focus on evaluation contexts and how they are manipulated by the µ operator. We feel
our review of dependent types and their interaction with control serves as a good introduction to
the research that has been done in trying to combine the two.

We defined and implemented a principal pairing algorithm for λµ with sums, products and
name polymorphism. The algorithm enjoyed soundness and completeness, meaning it is able to
serve as a checker for classical propositional proofs and we can be certain about its correctness.
This led to our development of a proof assisstant for classical propositional logic.

Our exploration into dependent types led to our development of ECCµ, which expands upon
previous work by safely introducing coproduct, inductive data and record types to the calculus.
We also presented and implemented a bidirectional type checking algorithm, forming the core
of a dependently typed functional programming language with control – which serves as a proof
assisstant for classical logic. Due to its need by the subtyping algorithm, the programs written in
this language are ‘runnable’, with a call-by-value evaluation strategy. During the development of
program evaluation, we created a Haskell type class that implements structural substitution with
an automatic definition for generic types, much in the style of unbound’s Subst type class.

11.2 Future Work

11.2.1 Simple Types

Non-logical Extension Although the propositional proof assisstant is fully capable of reasoning
about any classical proposition, it is somewhat limited as a programming language. It might be
worth considering abandoning the logical soundness, and instead developing a strongly typed,
Haskell-like language with control operators. This could be compared with languages like Typed
Scheme (or Typed Racket, a Scheme dialect), which have capabilities for control with the callcc

and abort operators, although the µ operator allows for perhaps a finer control over the context.
These languages however were made by retroactively adding a strong type system to Lisp dialects,
which are usually dynamically typed. Haskell also features a version of callcc, but is implemented
through a monad, meaning a computation involving it cannot be ‘pure’. A language based on λµ
would be able to have context control within ‘pure’ functions.

In fact, our principal pairing algorithm cases for dealing with µ and [·] terms can be transformed
and then added to Milner’s AlgorithmW [50]:
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W Γ ∆ µα.M = 〈S,Sϕ〉
where 〈S,⊥〉 =W Γ (α : ϕ,∆) M

ϕ is fresh

W Γ ∆ [α].M = 〈S2 ◦ S1,⊥〉
where 〈S1,A〉 =W Γ ∆M

α : B ∈ ∆
S2 = unify A (S1B)

11.2.2 Dependent Types

νλµ-Calculus In Chapter 9, we briefly discussed how a conjectured νλµ-calculus with depen-
dent types could lead to a more succinct proof of ¬∀w.B → ∃w.¬B. Although the calculus has
issues with its reductions, we do think it would be very interesting to explore if this calculus can
be safely equipped with dependent types, as it would give a language that is much more intuitive
from a logical perspective.

Equality Although equality highlighted the problems caused by mixing control and dependent
types, we gave it a minimal treatment in this report. We expect the usual equality rules from
Martin Löf type theory (like those in [75, A.2]) can be safely added to the theory, with maybe
some care to when terms are nef. An example of such a rule would be,

Γ ,x : A ` b : B Γ ` a : A
(Π =)

Γ ` (λx.b)a = b[a/x] : B[a/x]

which expresses how to reason about equality of a function application. As this involves an
application in the left hand side of the equality, it is likely that we would need a ∈ nef. Similar
rules can be found for the other types we presented.

Homotopy Type Theory (HoTT) One of the main areas of research into equality in type theory
is HoTT [75], which sees types as a homotopical space, and elements of types as objects in those
spaces. Equality between two elements of a type is identified by a path between them; they can
be seen as being different points on the same ‘object’. The notion of equality is further extended
by the axiom of Univalence, that states an isomorphism between two types means those two types
are equal, where an isomorphism is a bijective function between the two types that preserves
equalities. This axiom, however, is incompatible with classical logic; in particular, there are types
for which (¬¬E) and ((lem)) are false [75, p110]. It is worth exploring if this is still the case in
the classical dependent calculi due to the nef restrictions of dependent elimination; explicitly, in
a classical calculus (like ECCµ), are we able to soundly add univalence?

Weak Existential The dependent pair types in ECCµ are also known as strong sigma types [45,
p41]. They are characterised by the fact that we can ask for both the witness and the proof of the
type. Of course, we now know this isn’t completely compatible with the control operators, and
a lot of the work we’ve covered have been efforts towards getting them to play together nicely.
There are so-called ‘weak’ existential types, that logically relate to ∃, but don’t allow projections.
Such types usually have elimination rules with a motive. An example of such a rule is given by
[71],

Γ `m : ∃(x : A).B Γ ,x : A,y : B ` n : C Γ ` C : U
Γ ` Ex:A,y:B(m,n) : C

In [45, p43], Luo explains that when adding a weak existential quantifier type to a type system, if
the system also has strong Σ-types then we are able to define projections for the weak existential,
making the two isomorphic (meaning any weak existential must also be strong). It is worth
exploring if this property still holds in ECCµ, where there are cases when we aren’t able to project
out of the strong Σ-types, and if we can characterise the strong Σ-types by only those we are able
to apply projections to.
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Implementation

Given the limited time frame of this project, there are many ways in which the language can be
improved upon. We will briefly discuss some of the features found in other theorem provers that
are missing from ours. Some of these are necessary in order to ensure consistency of the language,
whereas the rest don’t affect the underlying logic of the type system, but do make the user level
syntax much nicer to work with.

Universe Hierarchy To simplify the implementation, we currently have a single universe U ,
with a typing rule U : U . As discussed in Chapter 5, this makes the system inconsistent. A simple
way to implement the univer hierarchy given by Ui : Ui+1, would be to have the user explicitly
state the level of each universe. The issue with this method is that the user needs to know in
advance the highest level that they expect a function will need. Using the example from [47], we
could define our own version of logical disjunction by Or : U100 → U100 → U100, and hope that
U100 is large enough to contain all the types that will be used with Or. A far better solution is
to have a typical ambiguity [37], where the user needs not annotate universe levels, and instead
the compiler ensures that the hierarchy is maintained. In a sense, the definitions A : U become
polymorphic in the universe level, allowing them to be used in arbitrarily large levels.

Safe Recursion We currently allow generally recursive functions, which means it is possible to
define non-terminating functions. This of course is another source of inconsistency, as we are
able to define a proof of ⊥,

foo : Bot

foo = foo

Although undecideable in general [73], we can employ conservative heuristics to avoid non-
terminating functions. Agda employs two methods of termination checking; Primitive and Structural
recursion. In primitive recursion, the arguments supplied to the recursive call must be exactly
one constructor smaller than those given. For example, foo (suc n) = foo n will pass this
check, but foo n = foo n will not. Structural recursion generalises this notion, and allows
recursive calls with subexpressions of the given arguments, where at least one argument is a strict
subexpression. A subexpression of a term m is a term that is 0 or more constructors smallers; a
subexpression is strictly smaller when it is 1 or more constructors smaller.

Implicit Arguments Currently, all arguments to our functions are explicit. This means that each
argument needs to be explicitly passed to a function, making many functions rather annoying to
handle. Implicit arguments allow the user to omit terms when calling a function, and letting
the type checker infer what term should be used. For example, the function id : (A : Univ)

-> A -> A has an explicit argument A, but this can always be inferred as the type of the second
argument. This function could be rewritten id : {A : Set} -> A -> A, which makes the first
argument implicit, so we can apply id without supplying it the first argument; for example, for a
typed term m : B, we need only write id m, the type B is inferred from m.

(Co)Pattern Matching Defining functions by case and build expressions is rather cumbersome
for the user. Agda, and indeed most functional programming languages in general, employs
pattern matching and copattern matching for defining functions on data and codata, respectively.
(Co)Pattern matching makes code far more readable, and is much more intuitive to code with.
Pattern matching with dependent types is a little more complex than with simple types, as the
variables bound by the pattern can also cause the types of the subsequent terms to have the
corresponding variable bound by this pattern.
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A | λµN

A.1 Proofs

Completeness for ppλµ
Proof. By induction on the structure ofM. This proof is strongly guided by the proof of completeness
of pp for Curry types in [8, p17].

Base Case x

Assume that Γ ` x : B | ∆.

As x is a variable, the only typing rule that can apply is (Ax), so we must have (x : B) ∈ Γ .

Now, the algorithm succeeds, by definition, with pp x = 〈{x : ϕ},∅,ϕ〉, and we show there is
a substitution S that satisfies the requirements; in particular, choose S = ϕ 7→ B. Then,

S{x : ϕ} = {x : B} ⊆ Γ

S∅ = ∅ ⊆ ∆

Sϕ = B

Inductive Case λx.M

Assume that Γ ` λx.M : B | ∆.

By (→ I), we must have types C and D such that B = C→D and,

Γ ,x : C `M :D | ∆

Thus, by induction: pp M succeeds, pp M = 〈Π,Σ,A〉, and there is a substitution S such that,

SΠ ⊆ Γ ,x : C

SΣ ⊆ ∆

SA =D

Then, by definition, pp λx.M will succeed.

• Case: x : P ∈Π
pp λx.M = 〈Π \ x : P ,Σ, P → A〉. As we have that SΠ ⊆ Γ ,x : C, it follows that both,

S(Π \ x : P ) ⊆ Γ as x < Γ , by (→ I)

and,

S P = C as x : P ∈Π =⇒ x : C ∈ SΠ

We already have that SΣ ⊆ ∆.

As SA = D and SP = C, it follows that S(P → A) = C → D = B. Thus we have found a
substitution satisfying the theorem.

• Case: x <Π

pp λx.M = 〈Π,Σ,ϕ→ A〉.
As x < Π and SΠ ⊆ Γ ,x : C, we can deduce that SΠ ⊆ Γ . We set S ′ = S ◦ (ϕ 7→ C). As ϕ is
fresh, it doesn’t appear in Π or Σ, which implies that,

S ′Π = SΠ ⊆ Γ and S ′Σ = SΣ ⊆ ∆

Finally, we know S ′ϕ = C and S ′A = D, so then S ′(ϕ → A) = C → D = B. So S ′ is a
satisfactory substitution.
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Inductive Case MN

Assume that Γ `MN : B | ∆.

By rule (→ E), there is a type C such that,

Γ `M : C→ B | ∆ and Γ `N : C | ∆

Then, by induction, pp M and pp N both succeed, and pp M = 〈Π1,Σ1, P1〉 and pp B =
〈Π2,Σ2, P2〉; and we have substitutions S1 and S2 such that:

S1Π1 ⊆ Γ S2Π2 ⊆ Γ

S1Σ1 ⊆ ∆ S2Σ2 ⊆ ∆

S1 P1 = C→D S2 P2 = C

With ϕ fresh, we now need substitutions satisfying,

Su = unify P1 (P2→ ϕ)

SΓ = unifyCtxt (SuΠ1) (SuΠ2)

S∆ = unifyConcs (SΓ ◦ SuΣ1) (SΓ ◦ SuΣ2)

By the definition of pp, the type variables in Π1 and Σ1 are separate from those in Π2 and
Σ2. This implies that S1 and S2 will act on distinct sets of type variables. We argue that we
need only check Su exists, as this implies that SΓ and S∆ exist.

If we let S ′u = S2 ◦ S1 ◦ (ϕ 7→D), we can see that,

S ′uP1 = C→D and S ′u(P2→ ϕ) = C→D

By 3.10, there exists some S ′′u such that S ′u = S ′′u ◦ Su . Thus, Su exists and the algorithm
succeeds.

We now show there is some S such that S(S∆ ◦ SΓ ◦ Su(Π1 ∪Π2)) ⊆ Γ

S(S∆ ◦ SΓ ◦ Su(Π1 ∪Π2)) ⊆ Γ and S(S∆ ◦ SΓ ◦ Su(Σ1 ∪Σ2)) ⊆ ∆

Well, taking S3 = S2 ◦S1 ◦ (ϕ 7→D), we note again S2 and S1 don’t act on the same types, and
that the types in Π1 and Σ1 are separate from those in Π2 and Σ2. This gives us,

S3Π1 ⊆ Γ S3Π2 ⊆ Γ

S3Σ1 ⊆ ∆ S3Σ2 ⊆ ∆

As we know from S ′u that S3 will unify P1 and P2→ ϕ, so, by 3.10, there is some S4 such that
S3 = S4 ◦ Su , which implies

S4 ◦ SuΠ1 ⊆ Γ S4 ◦ SuΠ2 ⊆ Γ

S4 ◦ SuΣ1 ⊆ ∆ S4 ◦ SuΣ2 ⊆ ∆

As both S4 ◦SuΠ1 and S4 ◦SuΠ2 are subsets of gamma, this means any shared variables will
have the same type. This means S4 must unify Π1 and Π2. So, by 3.10, there is some S5
such that S4 = S5 ◦ SΓ , which gives us,

S5 ◦ SΓ ◦ Su (Π1 ∪Π2) ⊆ Γ

S5 ◦ SΓ ◦ SuΣ1 ⊆ ∆ S5 ◦ SΓ ◦ SuΣ2 ⊆ ∆

Similarly, as both S5◦SΓ ◦SuΣ1 and S5◦SΓ ◦SuΣ2 are subsets of ∆, then any shared variables
must have the same types. This implies S5 must unify S5 ◦ SΓ ◦ SuΣ1 and S5 ◦ SΓ ◦ SuΣ2.
Again, using 3.10, there is some S6 such that S5 = S6 ◦ S∆. This (at last) gives us,

S6 ◦ (S∆ ◦ SΓ ◦ Su (Π1 ∪Π2)) ⊆ Γ

S6 ◦ (S∆ ◦ SΓ ◦ Su (Σ1 ∪Σ2)) ⊆ ∆

And we still have S6◦S∆◦SΓ ◦Suϕ = B, as this will contain the substitution S2◦S1◦(ϕ 7→D).
So we choose S6 to be the substitution, as it satisfies the required properties.
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Inductive Case µα.M

Assume Γ ` µα.M : A | ∆.

By (µ), we know Γ `M :⊥ | α : A, ∆

By induction, pp M succeeds, and;

pp M = 〈Π,Σ.P 〉
∃S such that SΠ ⊆ Γ

SΣ ⊆ ∆

S P =⊥

As we know S ′ P =⊥, we know P can be unified with ⊥; so the algorithm succeeds.

• Case α : B ∈ Σ
Then, by definition, pp µα.M = 〈Π,Σ \ (α : B),B〉.
As we know S ′Σ ⊆ ∆,α : A

=⇒ S ′ B = A,
and S ′Σ \ (α : B) ⊆ ∆

We already have that S ′Π ⊆ Γ , so we choose S = S ′ .

• Case α < Σ

Then, by definition, pp µα.M = 〈Π,Σ,ϕ〉.
Noting that ϕ doesn’t occur in Π or ∆, we choose S = S ′ ◦ (ϕ 7→ A).

This gives us;

SΠ ⊆ Γ

SΣ ⊆ ∆

Sϕ = A

Inductive Case [α]M

Assume that Γ ` [α]M :⊥ | α : A, ∆.

By (name): Γ `M : A | ∆.

By induction, pp M succeeds, and pp M = 〈Π,Σ,B〉 and ∃S such that:

SΠ ⊆ Γ

SΣ ⊆ ∆

S B = A

• Case α : C ∈ Σ
As we know SΣ ⊆ ∆, it follows that (α : SC) ∈ ∆
Now, as we have assumed [α]M is well formed and typed, the types in α : A and α : SC ∈ ∆
must be consistent; thus SC = A. By 3.10, unification of C and A succeeds, and we have, for
some S ′ , S = S ′ ◦ SU , where SU = unify A C.

Thus pp [α]M succeeds, and pp [α]M = SU 〈Π,Σ,⊥〉. As we know SΠ ⊆ Γ and SΣ ⊆ ∆, and
S = S ′ ◦ SU , we have

S ′(SUΠ) ⊆ Γ

S ′(SUΣ) ⊆ ∆

S ′⊥ =⊥

So S ′ is a satisfactory substitution.
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• Case α < Σ

Then, by definition, pp [α]M succeeds, and pp [α]M = 〈Π, (Σ,α : B),⊥〉.
We already know that S satisfies SΣ ⊆ ∆ and SB = A, so it follows that;

S (Σ,α : B) ⊆ ∆,α : A

Thus we choose S as the substitution, and we are done.

Soundness for ppλµ
Proof. By induction on the structure of M.

Base Case x

By definition, pp x = 〈{x : ϕ},∅,ϕ〉.
We immediately have; x : ϕ ` x : ϕ | ∅, from rule (Ax).

Inductive Case λx.M

Inductive Hypothesis:

pp M = 〈Γ ,∆,B〉 =⇒ Γ `M : B | ∆

• Case: x ∈ Γ
Now; we have that pp λx.M = 〈Γ \ (x : A),∆,A→ B〉
As we know that Γ `M : B | ∆, and that x : A ∈ Γ , then let Γ ′ be such that Γ = Γ ′ ,x : A. Then
we have:

Γ ′ ,x : A `M : B | ∆
=⇒ Γ ′ ` λx.M : A→ B | ∆ by (→ I)

=⇒ Γ \ (x : A) ` λx.M : A→ B | ∆ by defn of Γ

• Case x < Γ

Then pp λx.M = 〈Γ ,∆,ϕ→ B〉
Well, as we know Γ `M : B | ∆, and that x < f v(M), we can extend Γ with x : ϕ,

Γ ,x : ϕ `M : B | ∆
=⇒ Γ ` λx.M : ϕ→ B | ∆ by (→ I)

Inductive Case MN

Inductive Hypotheses:

pp M = 〈Γ1,∆1, P1〉 =⇒ Γ1 `M : P1 | ∆1

pp N = 〈Γ2,∆2, P2〉 =⇒ Γ2 `N : P2 | ∆2

We need only consider the case that pp MN will succeed. So we know

pp MN = S∆ ◦ SΓ ◦ SU 〈Γ1 ∪ Γ2,∆1 ∪∆2,ϕ〉

We write S := S∆ ◦ SΓ ◦ SU . As SU unifies P1 and P2 → ϕ, we can write SP1 = S(P2 → ϕ) =
A→ B, for some A and B.

We can apply S to our inductive hypotheses;

SΓ1 `M : SP1 | S∆1 =⇒ SΓ1 `M : A→ B | S∆1

SΓ2 `N : SP2 | S∆2 =⇒ SΓ2 `N : A | S∆2
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As we know Γ1 can be unified with Γ2 (and ∆1 with ∆2), we can apply weakening to both
derivations. Writing Γ = S(Γ1 ∪ Γ2) and ∆ = S(∆1 ∪∆2), we apply weakening,

Γ `M : A→ B | ∆ Γ `N : A | ∆

Then we apply rule (→ E),
Γ `MN : B | ∆

And we note that Sϕ = B, so S satisfies the needed properties.

Inductive Case µα.M

Inductive Hypothesis:

pp M = 〈Γ ,∆, P 〉 =⇒ Γ `M : P | ∆

As we need only consider when the algorithm succeeds, we know P =⊥, so

Γ `M :⊥ | ∆

• Case α ∈ ∆
Then we can write ∆ = ∆′ ,α : A and pp µα.M = 〈Γ ,∆′ ,A〉 And we can now derive,

Γ `M :⊥ | ∆′ ,α : A

=⇒ Γ ` µα.M : A | ∆′ by (µ)

• Case α < ∆

Then pp µα.M = 〈Γ ,∆,ϕ〉. We note that, as α < f n(M), we can weaken ∆,

Γ `M :⊥ | ∆
=⇒ Γ `M :⊥ | ∆,α : ϕ by weakening

=⇒ Γ ` µα.M : ϕ | ∆ by rule (µ)

Inductive Case [α]M

Inductive Hypothesis:

pp M = 〈Γ ,∆,A〉 =⇒ Γ `M : A | ∆

• Case α : B ∈ ∆
Then pp [α]M = S〈Γ ,∆,⊥〉, where S unifies A and B. We write P := SA = SB. As α ∈ ∆, we
can write ∆ = ∆′ ,α : B.

Applying S to the inductive hypothesis gives us,

S Γ `M : SA | S∆′ ,α : SB

=⇒ S Γ `M : P | S∆′ ,α : P

And now use of the (name) rule is permissable as α and M have the same types;

S Γ `M : P | S∆′ ,α : P

=⇒ S Γ ` [α]M :⊥ | S∆′ ,α : P by (name)

Finally, we note that S∆ = S(∆′ ,α : B) = S∆′ ,α : P , so we can rewrite the conclusion of the
derivation above;

S Γ ` [α]M :⊥ | S∆

• Case α < ∆

Then pp [α]M = 〈Γ , (∆,α : A),⊥〉
And we apply the (name) rule to the inductive hypothesis,

Γ `M : A | ∆
=⇒ Γ ` [α]M :⊥ | ∆,α : A by (name)
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Completeness for ppλµN
Proof. It is easy to see that, by A.1, we already have the cases for x,λx.M,MN,µα.M, [α]M done,
as the environment E is invariant in this cases, and is only passed as an extra parameter.

Base Case n

Assume that E;Γ ` n : B | ∆.

As n is a function name, the only rule we can apply is (n), so we must have n ∈ E.

By definition, the algorithm succeeds with pp n = 〈∅,∅,FreshInstance(En)〉. By definition of
FreshInstance, we can find a substitution S = FreshInstance(En) 7→ B. Then,

S{n : FreshInstance(En)} = {n : B} ⊆ E
S∅ = ∅ ⊆ Γ

S∅ = ∅ ⊆ ∆

Sϕ = B

Case ini(M)

Assume that E;Γ ` ini(M) : B | ∆.

Then, by (+Ii), we know B is a sum type, so there are B1,B2 such that B = B1 +B2.

– Case: i = 1
By induction, pp succeeds and pp E M = 〈Π,Σ,A〉, and there is a substitution S such
that SΠ ⊆ Γ , SΣ ⊆ ∆, SA = B1.
Then, pp E in1(M) = 〈Π,Σ,A + ϕ〉. So we choose S ′ = S ◦ (ϕ 7→ B2). Then we have
S ′Π ⊆ Γ , S ′Σ ⊆ ∆, S ′(A+ϕ) = B1 +B2 = B.

– Case: i = 2
Follows similarly.

Case case(M,N,L)

Assume that E;Γ ` case(M,N,L) : B | ∆.

Then, by the rule (+E), there are types C,D such that:

E;Γ `M : C +D | ∆ E;Γ `N : C→ B | ∆ E;Γ `M :D→ B | ∆

By induction, pp succeeds on M,N,L with:

pp E M = 〈Π1,Σ1, P1〉 pp E N = 〈Π2,Σ2, P2〉 pp E L = 〈Π3,Σ3, P3〉

And we have (mutually exclusive) substitutions S1,S2,S3 such that

S1Π1 ⊆ Γ S2Π2 ⊆ Γ S3Π3 ⊆ Γ

S1Σ1 ⊆ Γ S2Σ2 ⊆ Γ S3Σ3 ⊆ Γ

S1P1 = C +D S2P2 = C→ B S3P3 =D→ B

Taking ϕ,ϕ1,ϕ2 fresh, we need substitutions satisfying:

SM = unify P1 (ϕ1 +ϕ2)

SN = unify (SM P2) (SM (ϕ1→ ϕ))

SL = unify (SN ◦ SM P3) (SN ◦ SM (ϕ2→ ϕ))

Su = SL ◦ SN ◦ SM
SΓ = unifyCtxts (SuΠ1) (SuΠ2) (SuΠ3)

S∆ = unifyCtxts (SΓ ◦ SuΣ1) (SΓ ◦ SuΣ2) (SΓ ◦ SuΣ3)

S ′ = S∆ ◦ SΓ ◦ Su

Similar to our argument for the case MN in A.1, the type variables in Π1,Σ1 are separate
from those in Π2,Σ2 and Π3,Σ3 (which are also separate from each other); and we only need
to prove SM ,SN ,SL exist for SΓ and S∆ to exist.
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– Defining S ′M = S3 ◦S2 ◦S1 ◦ (ϕ1 7→ C)◦ (ϕ2 7→D), we see that S ′MP1 = C+D and S ′M (ϕ1 +
ϕ2) = C +D. Thus, by 3.10, SM exists.

– Defining S ′N = S3 ◦ S2 ◦ S1 ◦ SM ◦ (ϕ 7→ B), we see that S ′NP2 = C→ B and S ′N (ϕ1→ ϕ) =
C→ B. Thus, by 3.10, SN exists.

– Defining S ′L = S3 ◦S2 ◦S1 ◦SL ◦SM , we see that S ′LP3 =D→ B and S ′L(ϕ2→ ϕ) =D→ B.
Thus, by 3.10, SL exists.

Now we have a unification of the type variables, we know SΓ and S∆ exist. Using an
argument similar to the MN case in A.1, we get that there is a substitution S ′′ (containing
S1,S2,S3) such that:

S ′′ ◦ (S ′(Π1 ∪Π2 ∪Π3)) ⊆ Γ

S ′′ ◦ (S ′(Σ1 ∪Σ2 ∪Σ3)) ⊆ ∆

S ′′ϕ = B

And we note that pp E case(M,N,L) = S ′〈Π1 ∪Π2 ∪Π3,Σ1 ∪Σ2 ∪Σ3,ϕ〉, so we are done.

Case πi(M)

Assume that E;Γ ` πi(M) : B | ∆.

By (×E), there exist B1,B2 such that B = Bi and M : B1 ×B2.

By induction, pp succeeds on M and pp E M = 〈Π,Σ,A〉 and there is a substitution S such
that SΠ ⊆ Γ , SΣ ⊆ ∆, SA = B1 ×B2.

Taking ϕ1,ϕ2 fresh, define S ′ = S ◦ (ϕ1 7→ B1)◦ (ϕ 7→ B2). Then we can see that S ′A = B1×B2
and S ′(ϕ1 ×ϕ2) = B1 ×B2, so S ′ is a unifying substitution of A and ϕ1 ×ϕ2. Thus, by 3.10,
S ′′ = unify A (ϕ1 ×ϕ2) exists.

Then, the algorithm succeeds with pp E πi(M) = 〈Γ ,∆,S ′′ϕi〉. Taking S1 = S ◦ S ′′ , we get
S1Π ⊆ Γ , S1Σ ⊆ ∆, S1A = Bi .

Case (M,N )

Assume that E;Γ ` (M,N ) : B | ∆.

Then, by (×I), there are types B1,B2 such that B = B1 ×B2, M : B1 and N : B2.

By induction, pp succeeds onM and N with pp E M = 〈Π1,Σ1, P1〉 and pp E N = 〈Π2,Σ2, P2〉;
and there are substitutions S1,S2 such that;

S1Π1 ⊆ Γ S2Π2 ⊆ Γ

S1Σ1 ⊆ ∆ S2Σ2 ⊆ ∆

S1 P1 = B1 S2 P2 = B2

We now consider the context unifications:

SΓ = unifyCtxts Π1 Π2 S∆ = unifyConcs (SΓ Σ1) (SΓ Σ2)

As type variables aren’t shared between Π1,Σ1 and Π2,Σ2, then their unifications will
succeed. Again, using an argument similar to the MN case of A.1, there is a substitution S ′

(containing S1 and S2) such that

S ′ ◦ (S∆ ◦ SΓ (Π1 ∪Π2)) ⊆ Γ

S ′ ◦ (S∆ ◦ SΓ (Σ1 ∪Σ2)) ⊆ ∆

S ′ϕ = B
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Case 〈ε;M〉

Assume that E;Γ ` 〈ε;M〉 : B | ∆. Then, by (Defs), E;Γ `M : B | ∆.

By induction, pp E M = 〈Π,Σ,A〉 and there is a substitution S such that SΠ ⊆ Γ , SΣ ⊆
∆, SA = B.

Then, by definition, pp E 〈ε;M〉 = 〈Π,Σ,A〉, and S is a satisfactory substitution.

Case 〈(n =M);Defs, N 〉

Assume that E;Γ ` 〈(n =M);Defs, N 〉 : B | ∆.

By (Defs), there is a type C such that E;∅ `M : C | ∅ and E;Γ ,n : C ` 〈Defs, N 〉 : B | ∆
By induction pp E M = 〈∅,∅, P 〉 and pp (E ,n : P ) 〈Defs; N 〉 = 〈Π,Σ,A〉 and there is are
substitutions S,S ′ such that SΠ ⊆ Γ , SΣ ⊆ ∆, SA = B, S ′P = C. Just choose S ′′ = S ′ ◦ S, and
we are done.

Soundness for ppλµN
Proof. It’s easy to see that, by A.1, we already have the cases for x,λx.M,MN,µα.M, [α]M done,
as the environment E is invariant in this cases, and is only passed as an extra parameter.

Case (ini(M))

By induction, pp E M = 〈Γ ,∆,A〉 =⇒ E;Γ `M : A | ∆

– Case i = 1
Then we have pp E in1(M) = 〈Γ ,∆,A+ϕ〉. By (+I1) we know E;Γ `M : A+ϕ | ∆.

– Case i = 2 follows a similar argument.

Case (case(M,N,L))

By induction,

pp E M = 〈Γ1,∆1, P1〉 =⇒ E;Γ1 `M : P1 | ∆1

pp E N = 〈Γ2,∆2, P2〉 =⇒ E;Γ2 `N : P2 | ∆2

pp E L = 〈Γ3,∆3, P3〉 =⇒ E;Γ3 ` L : P3 | ∆3

Assuming pp succeeds, we get pp E case(M,N,L) = S5◦S4◦S〈Γ1∪Γ2∪Γ3,∆1∪∆2∪∆3,ϕ〉. We
write S ′ := S5 ◦ S4 ◦ S. As S unifies P1 with ϕ1 +ϕ2, P2 with ϕ1→ ϕ and P3 with ϕ2→ ϕ, we
can write; SP1 = S(ϕ1 +ϕ2) = A+B, SP2 = S(ϕ1→ ϕ) = A→ C and SP3 = S(ϕ2→ ϕ) = B→ C
for some A,B,C. As S ′ unifies Γ1,Γ2,Γ3, and ∆1,∆2,∆3, we can write Γ := S ′(Γ1 ∪ Γ2 ∪ Γ3) and
∆ := S ′(∆1 ∪∆2 ∪∆3). Then we can apply weakening to our hypotheses, and substiting the
types with S ′ ;

E;Γ `M : A+B | ∆
E;Γ `N : A→ C | ∆
E;Γ ` L : B→ C | ∆

By (+E), we deduce E;Γ ` case(M,N,L) : C | ∆, and we note that S ′ϕ = C.

Case πi(M)

By induction pp E M = 〈Γ ,∆,A〉 =⇒ E;Γ `M : A | ∆ As S unifies Awith ϕ1×ϕ2, we can write
SA = S(ϕ1 ×ϕ2) = A1 ×A2 for some A1,A2. Then we get pp E πi(M) = 〈Γ ,∆,Sϕi〉 = 〈Γ ,∆,Ai〉
and E;Γ `M : A1 ×A2 | ∆.

Thus, by (×Ei), we can derive E;Γ ` πi(M) : Ai | ∆.
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Case (M,N )

By induction,

pp E M = 〈Γ1,∆1,A〉 =⇒ E;Γ1 `M : A | ∆1

pp E N = 〈Γ2,∆2,B〉 =⇒ E;Γ2 `N : B | ∆2

Then, pp E (M,N ) = S2 ◦ S1〈Γ1 ∪ Γ2,∆1 ∪∆2,A × B〉. Writing S := S2 ◦ S1 we know there are
C,D such that S(A×B) = C ×D, and we can define Γ = S(Γ1 ∪ Γ2) and ∆ = S(∆1 ∪∆2), so we
know (by weakening and applying S):

E;Γ `M : C | ∆ E;Γ `N :D | ∆

By (×I), we get E;Γ ` (M,N ) : C ×D | ∆.

Case 〈ε;M〉

By induction pp E M = 〈Γ ,∆,A〉 =⇒ E;Γ `M : A | ∆.

Then pp E (ε;M) = 〈Γ ,∆,A〉, and thus we can derive:

E ` ε E ,Γ `M : A | ∆
E;Γ ` 〈ε;M〉 : A | ∆

Case 〈(n =M) : Defs;N 〉

By induction

pp E M = 〈∅,∅,A〉 =⇒ E;∅ `M : A | ∅
pp (E ,n : A) 〈Defs;N 〉 = 〈Γ ,∆,B〉 =⇒ E ,n : A;Γ ` 〈Defs;N 〉 : B | ∆

This means that we know

E ,n : A `Defs E ,n : A;Γ `N : B | ∆
E ,n : A;Γ ` 〈Defs;N 〉 : B | ∆

Then pp E 〈(n =M) : Defs;N 〉 = 〈Γ ,∆,B〉, and thus we can derive:

E;∅ `M : A | ∅ E ,n : A `Defs
E ,n : A ` (n =M);Defs E ,n : A,Γ `N : B | ∆

E ,n : A;Γ ` 〈(n =M) : Defs;N 〉 : B | ∆
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A.2 Implementation

Syntax

Propositional Prover Syntax

〈name〉 ::= [unicode letters]
〈var〉 ::= ‘_′ | 〈name〉
〈term〉 ::= 〈name〉

| \(〈var〉+)→ 〈term〉
| \(〈var〉 : 〈type〉)→ 〈term〉
| 〈term〉+
| \〈var〉 : 〈var〉\ 〈term〉
| in(1|2) 〈term〉
| case 〈term〉 of (〈term〉|〈term〉)
| (〈term〉,〈term〉)
| proj(1|2) 〈term〉
| (〈term〉)
| ()
| ?[0− 9]+

〈type〉 ::= 〈name〉
| Top

| Bot

| 〈type〉 → 〈type〉
| 〈type〉+ 〈type〉
| 〈type〉 ∗ 〈type〉
| (〈type〉)

〈decl〉 ::= 〈name〉 : 〈type〉
| 〈name〉 = 〈term〉

A.2.1 Natural Deduction

The following is an encoding of the usual rules for natural deduction. References for these rules
can be found in [23].

-- Axiom

ax : A -> A

ax x = x

-- Implication

arrI : A -> B -> (A -> B)

arrI x y = (\ _ -> y)

arrE : (A -> B) -> A -> B

arrE = ax

-- Falsum

botE : Bot -> a

botE x = \a:_\ x

-- Negation

nne : ¬¬a -> a

nne y = \a:_\ y(\ x -> \_:a\ x)

negI : a -> Bot -> ¬a

negI x y = \_ -> y
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negE : ¬A -> A -> Bot

negE = ax

-- Conjuction

andI : A -> B -> A * B

andI x y = (x, y)

andE1 : A * B -> A

andE1 x = proj1 x

andE2 : A * B -> B

andE2 x = proj2 x

-- Disjunction

lem : (A + ¬A)

lem = \a:a\ (in2 (\ x -> \_:a\ (in1 x)))

orI1 : A -> A + B

orI1 x = in1 x

orI2 : B -> A + B

orI2 x = in2 x

orE : (A + B) -> (A -> C) -> (B -> C) -> C

orE x y z = case x of {y | z}

-- Iff

iffI : (A -> B) -> (B -> A) -> (A <-> B)

iffI x y = (x, y)

iffE1 : (A <-> B) -> A -> B

iffE1 = andE1

iffE2 : (A <-> B) -> B -> A

iffE2 = andE2

-- Derived

pierce : ((A -> B) -> A) -> A

pierce y = \a:a\ y (\ x . \_:a\ x)

weak_pierce : ((A -> Bot) -> A) -> A

weak_pierce = pierce
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B | ECCµ

B.1 Proofs

nef-Substitution Closure in Collapsed dPAω

Proof. By induction on the structure of nef terms. x < fv(m) =⇒ m[n/x] = m ∈ nef. This covers
terms y,〈〉,refl. From now on, we assume x ∈ fv(m).

Base Case Assume n ∈ nef; then x[n/x] = n ∈ nef.

Inductive Cases Assume p[n/x],q[n/x],m[n/x] ∈ nef. Then:

• (λy.m)[n/x] = λy.(m[n/x]) ∈ nef

• ini(m)[n/x] = ini(m[n/x]) ∈ nef

• πi(m)[n/x] = πi(m[n/x]) ∈ nef

• (p,q)[n/x] = (p[n/x],q[n/x]) ∈ nef

• (case m of (p,q))[n/x] = case m[n/x] of (p[n/x],q[n/x]) ∈ nef

• (subst p q)[n/x] = subst p[n/x] q[n/x] ∈ nef

• (let y = p in q)[n/x] = let y = p[n/x] in q[n/x]

• (ind t of (p|(y,z).q))[n/x] = ind t[n/x] of (p[n/x]|(y,z).q[n/x]) ∈ nef

• (cofix t of (y,z).q)[n/x] = cofix t[n/x] of (y,z).q[n/x] ∈ nef

nef-Reduction Closure in Collapsed dPAω

Proof. By induction on the definition of reductions. We don’t consider the reductions that are
defined on non-nef terms, like the standard β reduction (as application isn’t nef).

• let x = ini(p) in q ∈ nef =⇒ p,q ∈ nef =⇒ let y = p in q[ini(y)/a] ∈ nef

• πi(let x = p in q) ∈ nef =⇒ p,q ∈ nef =⇒ let x = p in πi(q) ∈ nef

• let x = p in q ∈ nef =⇒ p,q ∈ nef =⇒ p[n/x] ∈ nef

• case ini(m) of (x1.n1|x2.n2) ∈ nef =⇒ m,p,q ∈ nef =⇒ let x =m in ni ∈ nef

• πi(m1,m2) ∈ nef =⇒ m1,m2 ∈ nef

• subst refl m ∈ nef =⇒ m ∈ nef

• ind 0 of (p|(x,y).q) ∈ nef =⇒ m,p,q ∈ nef =⇒ p ∈ nef

• ind S(t) of (p|(x,y).q) ∈ nef =⇒ m,p,q ∈ nef =⇒ p,q
[
m/x, (ind t of (p|(x2, y2).q))/y

]
∈ nef

For the cofix operator, we need only consider evaluation contexts F such that F{let z =
cofix m of (x,y).p in q} ∈ nef. This certainly means that m,p,q ∈ nef, and, one can see that
for any n ∈ nef, F{n} ∈ nef. Thus let z = cofix m of (x,y).p in F{q} ∈ nef.

For the other reduction, assume let z = cofix m of (x,y).p in D{z} ∈ nef. Then we have
m,p,D{z} ∈ nef, thus let z = p

[
(λw.cofix w of (x2, y2).p)/x, m/y

]
in D{z} ∈ nef
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Lemma 7.8: nef-Substitution and Reduction Closure in ECCµ

Proof. (i) By induction on the structure of nef terms. x < fv(m) =⇒ m[n/x] =m ∈ nef. This covers
terms y,〈〉,1,Ui ,0,refl. From now on, we assume x ∈ fv(m).

Base Case Assume n ∈ nef; then x[n/x] = n ∈ nef.

Inductive Cases Assume p[n/x],q[n/x],m[n/x],A[n/x],B[n/x] ∈ nef. Then:

• ((y : A)→ B)[n/x] = (y : A[n/x])→ B[n/x] ∈ nef

• (λy.m)[n/x] = λy.(m[n/x]) ∈ nef

• (let y = p in q)[n/x] = (let y = p[n/x] in q[n/x]) ∈ nef

• ((y : A)×B)[n/x] = (y : A[n/x])×B[n/x] ∈ nef

• πi(m)[n/x] = πi(m[n/x]) ∈ nef

• (p,q)[n/x] = (p[n/x],q[n/x]) ∈ nef

• (A+B)[n/x] = (A[n/x] +B[n/x] ∈ nef)

• ini(m)[n/x] = ini(m[n/x]) ∈ nef

• (case m of (y1.p,y2.q))[n/x] = case m[n/x] of (y1.p[n/x], y2.q[n/x]) ∈ nef

• (p =A q)[n/x] = (p[n/x] =A q[n/x]) ∈ nef

• (subst p q)[n/x] = subst p[n/x] q[n/x] ∈ nef

(ii) By induction on the definition of reductions. Note that the (µ) reductions involve terms of
the form µα.m, and thus won’t be nef.

• let x = ini(p) in q ∈ nef =⇒ p,q ∈ nef =⇒ let y = p in q[ini(y)/a] ∈ nef

• πi(let x = p in q) ∈ nef =⇒ p,q ∈ nef =⇒ let x = p in πi(q) ∈ nef

• let x = p in q ∈ nef =⇒ p,q ∈ nef =⇒ p[n/x] ∈ nef

• case ini(m) of (x1.n1|x2.n2) ∈ nef =⇒ m,p,q ∈ nef =⇒ let x =m in ni ∈ nef

• πi(m1,m2) ∈ nef =⇒ m1,m2 ∈ nef

• subst refl m ∈ nef =⇒ m ∈ nef

• κ{let x = m in n} ∈ nef means that all terms appearing in the context κ are nef
1, and that

m,n ∈ nef =⇒ let x =m in κ{n} ∈ nef.

As it holds for the single step reductions, this holds by transitivity for →∗, and it is easy to see
this holds for the contextual closure relations.

Lemma 7.9: nef-Term Substitution

Proof by induction on the structure of M. Assume Γ ,x : C ` M : A | ∆ and Γ `
nef

N : C | ∆. We
write Γ ′ and ∆′ for Γ [N/x] and ∆[N/x], respectively.

• x:

Γ ,x : C ` x : C | ∆ and Γ ` C : Ui | ∆ (Ax)

=⇒ Γ ′ ` x[N/x] : C[N/x] | ∆′ ,
Γ ′ ` C[N/x] : Ui | ∆′ Induction

=⇒ Γ ′ ` x[N/x] : C | ∆′ and Γ ′ ` C : Ui | ∆′ (x < fv(C), by (Ax))

=⇒ Γ ′ `N : C | ∆′ Defn
1This can be proved with a very simple induction on the definition of κ, needing only consider when it is of the form

ini (κ′), (κ′ ,m), (v,κ),case κ′ of (x1.n1|x2.n2),pii (κ′),subst κ′ m,let x = κ′ in m.
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• y:

Γ , y : C ` y : C | ∆ and Γ ` C : Ui | ∆ (Ax)

=⇒ Γ ′ ` y[N/x] : C[N/x] | ∆′ ,
Γ ′ ` C[N/x] : Ui | ∆′ Induction

=⇒ Γ ′ ` y[N/x] : C[N/x] | ∆′ (Ax)

=⇒ Γ ′ ` y : C[N/x] | ∆′ Defn

• (y :m)→ n

A = Ui , Γ ,x : C `m : Ui | ∆ and, Γ ,x : C,y :m ` n : Ui | ∆ (Π)

=⇒ Γ ′ `m[N/x] : Ui | ∆′ ,
Γ ′ , y :m[N/x] ` n[N/x] : Ui | ∆′ Induction

=⇒ Γ ′ ` (y :m[N/x])→ n[N/x] : Ui | ∆′ (Π)

=⇒ Γ ′ ` ((y :m)→ n)[N/x] : Ui | ∆′ Defn

• λy.m

A = (y : E)→ F and Γ ,x : C,y : E `m : F | ∆ (→ I)

=⇒ Γ ′ , y : E[N/x] `m[N/x] : F[N/x] | ∆′ Induction

=⇒ Γ ′ ` λy.(m[N/x]) : (y : E[N/x])→ F[N/x] | ∆′ (→ I)

=⇒ Γ ′ ` (λy.m)[N/x] : ((y : E)→ F)[N/x] | ∆′ Defn

• let y =m in n : A

Non-dependent: Γ ,x : C `m : B | ∆ and Γ ,x : C,y : B ` n : A | ∆ (let)

=⇒ Γ ′ `m[N/x] : B[N/x] | ∆′ ,
Γ ′ , y : B[N/x] ` n[N/x] : A[N/x] | ∆′ Induction

=⇒ Γ ′ ` let y =m[N/x] in n[N/x] : A[N/x] | ∆′ (let)

=⇒ Γ ′ ` (let y =m in n)[N/x] : A[N/x] | ∆′ Defn

Dependent: A = A′[m/y]Γ ,x : C `m : B | ∆,

Γ ,x : C,y : B `
nef

n : A′ | ∆ (letd)

=⇒ Γ ′ `m[N/x] : B | ∆′ ,
Γ ′ , y : B `

nef
n[N/x] : A′[N/x] | ∆′ Induction

=⇒ Γ ′ ` let y =m[N/x] in n[N/x] : A′[N/x][(m[N/x])/y] | ∆′ (letd)

=⇒ Γ ′ ` (let y =m in n)[N/x] : A′[m/y][N/x] | ∆′ Defn

• mn

Non-dependent: Γ ,x : C `m : B→ A | ∆ and Γ ,x : C ` n : B | ∆ (→ E)

=⇒ Γ ′ `m[N/x] : (B→ A)[N/x] | ∆′ ,
Γ ′ ` n[N/x] : B[N/x] | ∆′ Induction

=⇒ Γ ′ `m[N/x] : (B[N/x]→ A[N/x]) | ∆′ Defn

=⇒ Γ ′ `m[N/x]n[N/x] : A[N/x] | ∆′ (→ E)

=⇒ Γ ′ ` (mn)[N/x] : A[N/x] | ∆′ Defn

Dependent: A = A′[n/y],Γ ,x : C `m : (y : B)→ A′ | ∆,

Γ ,x : C `
nef

n : B | ∆ (→ Ed)

=⇒ Γ ′ `m[N/x] : ((y : B)→ A′)[N/x] | ∆′ ,
Γ ′ `

nef
n[N/x] : B[N/x] | ∆′ Induction

=⇒ Γ ′ `m[N/x] : (y : B[N/x])→ A′[N/x] | ∆′ Defn

=⇒ Γ ′ `m[N/x]n[N/x] : A′[N/x][(n[N/x])/y] | ∆′ (→ Ed)

=⇒ Γ ′ ` (mn)[N/x] : A′[n/y][N/x] | ∆′ Defn
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• (y :m)×n

A = Ui , Γ ,x : C `m : Ui | ∆ and Γ ,x : C,y :m ` n : Ui | ∆ (Σ)

=⇒ Γ ′ `m[N/x] : Ui | ∆′ ,
Γ , y :m[N/x] ` n[N/x] : Ui | ∆ Induction

=⇒ Γ ′ ` (y :m[N/x])×n[N/x] : Ui | ∆′ (Σ)

=⇒ Γ ′ ` ((y :m)×n)[N/x] : Ui | ∆′ Defn

• (m,n)

A = (y : A1)×A2, Γ ,x : C `m : A1 | ∆ and Γ ,x : C ` n : A2[m/y] | ∆ (×I)
=⇒ Γ ′ `m[N/x] : A1[N/x] | ∆′ ,

Γ ′ ` n[N/x] : (A2[(m[N/x])/y])[N/x] | ∆′ Induction

=⇒ Γ ′ ` n[N/x] : A2[N/x][(m[N/x])/y] | ∆′ Defn

=⇒ Γ ′ ` (m[N/x],n[N/x]) : (y : A1[N/x])×A2[N/x] | ∆′ (×I)
=⇒ Γ ′ ` (m,n)[N/x] : ((y : A1)×A2)[N/x] | ∆′ Defn

• π1(m)

Non-dependent: Γ ,x : C `m : A×B | ∆ (×E1)

=⇒ Γ ′ `m[N/x] : (A×B)[N/x] | ∆′ Induction

=⇒ Γ ′ `m[N/x] : A[N/x]×B[N/x] | ∆′ Defn

=⇒ Γ ′ ` π1(m[N/x] : A[N/x]) | ∆′ (×E1)

=⇒ Γ ′ ` (π1(m))[N/x] : A[N/x] | ∆′ Defn

Dependent: Γ ,x : C `m : (y : A)×B | ∆ (×Ed1 )

=⇒ Γ ′ `m[N/x] : ((y : A)×B)[N/x] | ∆′ Induction

=⇒ Γ ′ `m[N/x] : ((y : A[N/x])×B[N/x]) | ∆′ Defn

=⇒ Γ ′ ` π1(m[N/x] : A[N/x]) | ∆′ (×E1)

=⇒ Γ ′ ` (π1(m))[N/x] : A[N/x] | ∆′ Defn

• π2(m)

Non-dependent: Γ ,x : C `m : B×A | ∆ (×E2)

=⇒ Γ ′ `m[N/x] : (B×A)[N/x] | ∆′ Induction

=⇒ Γ ′ `m[N/x] : B[N/x]×A[N/x] | ∆′ Defn

=⇒ Γ ′ ` π2(m[N/x] : A[N/x]) | ∆′ (×E2)

=⇒ Γ ′ ` (π2(m))[N/x] : A[N/x] | ∆′ Defn

Dependent: A = A′[π1(m)/y], Γ ,x : C `m : (y : B)×A′ | ∆ (×Ed2 )

=⇒ Γ ′ `m[N/x] : ((y : B)×A′)[N/x] | ∆′ Induction

=⇒ Γ ′ `m[N/x] : (y : B[N/x])×A′[N/x] | ∆′ Defn

=⇒ Γ ′ ` π2(m[N/x] : A′[π1(m[N/x])/y]) | ∆′ (×E2)

=⇒ Γ ′ ` (π2(m))[N/x] : A′[π1(m)/y][N/x] | ∆′ Defn

• m+n

A = Ui , Γ ,x : C `m : Ui | ∆ and Γ ,x : C ` n : Ui | ∆ (+F)

=⇒ Γ ′ `m[N/x] : Ui | ∆′ and Γ ` n[N/x] | ∆ Induction

=⇒ Γ ′ `m[N/x] +n[N/x] : Ui | ∆′ (+F)

=⇒ Γ ′ ` (m+n)[N/x] : Ui | ∆′ Defn
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• ini(m): We show for i = 1; it is almost exactly the same for i = 2 (as there is no dependency).

A = A1 +A2, Γ ,x : C `m : A1 | ∆ and Γ ,x : C ` Ai : Ui | ∆ (+I)

=⇒ Γ ′ `m[N/x] : A1[N/x] | ∆′ ,
=⇒ Γ ′ ` Ai[N/x] : Ui | ∆′ Induction

=⇒ Γ ′ ` in1(m[N/x]) : A1[N/x] +A2[N/x] | ∆′ (+I)

=⇒ Γ ′ ` (in1(m))[N/x] : (A1 +A2)[N/x] | ∆′ Defn

• case m. z.M of (x1.n1|x2.n2)

Non-dependent: M = A, Γ ,x : C `m : B1 +B2 | ∆,
Γ ,x : C,xi : Bi ` ni : A | ∆, (+E)

Γ ,x : C ` A : Ui | ∆
=⇒ Γ ′ `m[N/x] : (B1 +B2)[N/x] | ∆′ ,

Γ ′ ,xi : Bi [N/x] ` ni [N/x] : (A[N/x]) | ∆′ , (Induction)

Γ ′ ` A[N/x] : Ui | ∆′

=⇒ Γ ′ `m[N/x] : B1[N/x] +B2[N/x] | ∆′ (Defn)

=⇒ Γ [N/x] `
case m[N/x] . z.(A[N/x]) of (x1.(n1[N/x])|x2.(n2[N/x])) : A[N/x] (+E)

| ∆[N/x]

=⇒ Γ ′ ` (case m. z.A′ of (x1.n1|x2.n2))[N/x] : A[N/x] | ∆′ Defn

Dependent: A = A′[m/z], Γ ,x : C `m : B1 +B2 | ∆,

Γ ,x : C,xi : Bi ` ni : A[ini (xi )/x] | ∆, (+Ed )

Γ x : C,z : B1 +B2 `M : Ui | ∆
=⇒ Γ ′ `m[N/x] : (B1 +B2)[N/x] | ∆′ ,

Γ ′ ,xi : Bi [N/x] ` ni [N/x] : (A′[ini (xi )/z][N/x]) | ∆′ , (Induction)

Γ ′ , z : (B1 +B2)[N/x] ` A′[N/x] : Ui | ∆′

=⇒ Γ ′ `m[N/x] : B1[N/x] +B2[N/x] | ∆′ ,
Γ ′ ,xi : Bi [N/x] ` ni [N/x] : A′[N/x][ini (xi )/z] | ∆′ , (Defn)

Γ ′ , z : B1[N/x] +B2[N/x] ` A′[N/x] : Ui | ∆′

=⇒ Γ [N/x] `

case m[N/x] . z.(A′[N/x]) of (x1.(n1[N/x])|x2.(n2[N/x])) : A′[N/x][m/z] (+Ed )

| ∆[N/x]

=⇒ Γ ′ ` (case m. z.A′ of (x1.n1|x2.n2))[N/x] : A′[m/z][N/x] | ∆′ Defn

• m =B n

A = Ui , Γ ,x : C `m : B | ∆ and Γ ,x : C ` n : B | ∆ (=)

=⇒ Γ ′ `m[N/x] : [N/x]B | ∆′ ,
Γ ` n[N/x] : B[N/x] | ∆ Induction

=⇒ Γ ′ `m[N/x] =B n[N/x] | ∆′ (=)

=⇒ Γ ′ ` (m =B n)[N/x] | ∆′ Defn

• refl

A = (m =B m), Γ ,x : C ` B : Ui | ∆ and Γ ,x : C `m : B | ∆ (refl)

=⇒ Γ ′ ` B[N/x] : Ui | ∆′Γ ′ `m[N/x] : B[N/x] | ∆′ Induction

=⇒ Γ ′ ` reflm[N/x] :m[N/x] =B[N/x] m[N/x] | ∆′ (refl)

=⇒ Γ ′ ` reflm[N/x] : (m =B m)[N/x] | ∆′ Defn
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• subst m n

Γ ,x : C,z : B ` A : Ui | ∆,Γ ,x : C ` n : A[p/z] | ∆,Γ ,x : C `m : p = q | ∆ (subst)

=⇒ Γ ′ , z : B[N/x] ` A[N/x] : Ui | ∆′ ,
Γ ′ ` n[N/x] : A[p/z][N/x] | ∆′ , Induction

Γ ′ `m[N/x] : (p =B q)[N/x] | ∆′

=⇒ Γ ′ ` n[N/x] : A[N/x][(p[N/x])/z] | ∆′ ,
Γ ′ `m[N/x] : p[N/x] =B[N/x] q[N/x] | ∆′ Defn

=⇒ Γ ′ ` subst m[N/x] n[N/x] : A[N/x][(q[N/x])/z] | ∆′ (subst)

=⇒ Γ ′ ` (subst m n)[N/x] : A[q/z][N/x] | ∆′ Defn

• µα.m

Γ ,x : C `m :⊥ | α : A,∆ (µ)

=⇒ Γ `m[N/x] | α : A[N/x],∆ Induction

=⇒ Γ ` µα.(m[N/x]) : A[N/x] | ∆ (subst)

=⇒ Γ ` (µα.m)[N/x] : A[N/x] | ∆ Defn

• [α]m

A =⊥ Γ ,x : C `m : B | ∆ (name)

=⇒ Γ ′ `m[N/x] : B[N/x] | ∆′ Induction

=⇒ Γ ′ ` [α](m[N/x]) :⊥ | α : B[N/x],∆′ (name)

=⇒ Γ ′ ` ([α]m)[N/x] :⊥[N/x] | α : B[N/x],∆′ Defn

• 〈〉: by (unit), Γ ′ ` 〈〉 : 1 | ∆′ =⇒ Γ ′ ` 〈〉[N/x] : 1[N/x] | ∆′

• 1: by (1), Γ ′ ` 1 : Ui | ∆′ =⇒ Γ ′ ` 1[N/x] : Ui[N/x] | ∆′

• 0: by (0), Γ ′ ` 0 : Ui | ∆′ =⇒ Γ ′ ` 0[N/x] : Ui[N/x] | ∆′

• Ui : by (Ui), Γ ′ ` Ui : Ui+1 | ∆′ =⇒ Γ ′ ` Ui[N/x] : Ui+1[N/x] | ∆′

Lemma 7.10: Subject Reduction

Proof by induction on reductions. For each reduction M→N , assume Γ `M : A | ∆.

• (λx.m)n→ let x = n in m

Non-dependent: Γ ` λx.m : B→ A | ∆ and Γ ` n : B | ∆ (→ E)

=⇒ Γ ,x : B `m : A | ∆ (→ I)

=⇒ Γ ` let x = n in m : A | ∆ (let)

Dependent: A = A′[n/x]Γ ` λx.m : (x : B)→ A′ | ∆ and Γ `
nef

n : B | ∆ (→ Ed)

=⇒ Γ ,x : B `m : A′ | ∆ (→ I)

=⇒ Γ ` let x = n in m : A′[n/x] | ∆ (letd)

• let x = v in m→m[v/x]

Non-dependent: Γ ,x : B `m : A | ∆, Γ ` v : B | ∆ (let)

=⇒ Γ `m[v/x] : A | ∆ Lemma 7.9

Dependent: A = A′[v/x]Γ ,x : B `m : A | ∆, Γ `
nef

v : B | ∆ (letd)

=⇒ Γ `m[v/x] : A′[v/x] | ∆ Lemma 7.9
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• κ{let x =m in n} → let x =m in κ{n}

Non-dependent: Γ ` κ{let x =m in n} : A | ∆
Assume that there is a type B (a subterm of A) such that:

Γ ` let x =m in n : B | ∆.
=⇒ The hole in κ has type B, and Γ ` n : B | ∆ (let)

=⇒ Γ ` κ{n} : A | ∆, as n has the same type as •
=⇒ Γ ` let x =m in κ{n} : A | ∆ (let)

Dependent: Γ ` κ{let x =m in n} : A | ∆
=⇒ A = A′[m/x], as the type assignment for κ{let x =m in n}

will at some point use the let
d rule, which will bind x in a subterm of A.

Assume that there is a type B (a subterm of A) such that:

Γ ` let x =m in n : B | ∆.

=⇒ B = B′[m/x], Γ `
nef

m : C | ∆, Γ ,x : C ` n : B′ | ∆ (letd)

=⇒ The hole in κ has type B′ , with x ∈ fv(B′)

=⇒ Γ ,x : C ` κ{n} : A′ | ∆, as n has the same type as •

=⇒ Γ ` let x =m in κ{n} : A′[m/x] | ∆ (letd)

• case ini(m) . z.C of (x1.n1|x2.n2)→ let xi =m in ni

Non-dependent: A = C[ini(m)/z],Γ ` ini(m) : B1 +B2 | ∆, Γ ` C : Ui | ∆,
Γ ,xi : Bi ` ni : C | ∆ (+E)

=⇒ Γ `m : Bi | ∆ (+Ii)

=⇒ Γ ` let xi =m in ni : C | ∆ (let)

=⇒ Γ ` let xi =m in ni : C | ∆ (Defn)

Dependent: A = C[ini(m)/z],Γ `
nef

ini(m) : B1 +B2 | ∆,

Γ , z : B1 +B2 ` C : Ui | ∆, (+Ed)

Γ ,xi : Bi ` ni : C[ini(xi)/z] | ∆
=⇒ Γ `

nef
m : Bi | ∆ (+Ii)

=⇒ Γ ` let xi =m in ni : (C[ini(xi)/z])[m/xi] | ∆ (letd)

=⇒ Γ ` let xi =m in ni : C[ini(m)/z] | ∆ (Defn)

• π1(m1,m2)→m1

Non-dependent: Γ ` (m1,m2) : A×B | ∆ (×E1)

=⇒ Γ `m1 : A | ∆ (×I)

Dependent: Γ `
nef

(m1,m2) : (x : A)×B | ∆ (×Ed1 )

=⇒ Γ `
nef

m1 : A | ∆ (×I)

• π2(m1,m2)→m2

Non-dependent: Γ ` (m1,m2) : B×A | ∆ (×E2)

=⇒ Γ `m2 : A | ∆ (×I)

Dependent: A = A′[π1(m1,m2)/x], Γ `
nef

(m1,m2) : (x : B)×A′ | ∆ (×Ed2 )

=⇒ Γ `
nef

m2 : A′[π1(m1,m2)/x] | ∆ (×I)
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• subst refl m→m

A = B[q/x], Γ ` refl : p = q | ∆, Γ `m : B[p/x] | ∆ (subst)

=⇒ Γ ` refl : p = p | ∆, so q is syntactically equal to p (refl)

=⇒ B[q/x] = B[p/x] = A

=⇒ Γ `m : A | ∆

• v(µα.m)→ µα.m[[α]v • /[α]•]

Γ ` v : B→ A | ∆, Γ ` µα.m : B | ∆ (→ E)

=⇒ Γ `m :⊥ | α : B,∆ (µ)

=⇒ Γ ` n : B | ∆, for each n such that [α]n is a subterm of m (name)

=⇒ Γ ` vn : A | ∆ (→ E)

=⇒ Γ ` [α]vn :⊥ | α : A,∆ (name)

=⇒ Γ ` µα.m[[α]v • /[α]•] : A | ∆

• (µα.m)n→ µα.m[[α] •n/[α]•]

Γ ` n : B | ∆, Γ ` µα.m : B→ A | ∆ (→ E)

=⇒ Γ `m :⊥ | α : B→ A,∆ (µ)

=⇒ Γ ` p : B→ A | ∆, for each p such that [α]p is a subterm of m (name)

=⇒ Γ ` pn : A | ∆ (→ E)

=⇒ Γ ` [α]pn :⊥ | α : A,∆ (name)

=⇒ Γ ` µα.m[[α] •n/[α]•] : A | ∆

• let x = µα.m in n→ µα.m[[α]let x = • in n/[α]•]

Γ ,x : B ` n : A | ∆, Γ ` µα.m : B | ∆ (let)

=⇒ Γ `m :⊥ | α : B,∆ (µ)

=⇒ Γ ` p : B | ∆, for each p such that [α]p is a subterm of m (name)

=⇒ Γ ` let x = p in n : A | ∆ (let)

=⇒ Γ ` [α]let x = p in n :⊥ | α : A,∆ (name)

=⇒ Γ ` µα.m[[α] •n/[α]•] : A | ∆

• µα.[α]m→m (α < fn(m))

Γ ` [α]m :⊥ | α : A,∆ (µ)

=⇒ Γ `m : A| ∆ (name)

• [β]µδ.m→m[β/δ]

So A :⊥ by (name), and;

Γ ` µδ.m : B | β : B,∆ (name)

=⇒ Γ `m :⊥ | β : B,δ : B,∆ (µ)

We also need that m[β/δ] : A =⇒ m : A. As β : B and δ : B, then substituting β for δ will not
change the type of a term. Indeed, for any named term [δ]n:

Γ ` [δ]n :⊥ | δ : B,β : B,∆

=⇒ Γ ` n : B| δ : B,β : B,∆ (name)

=⇒ Γ ` [β]n :⊥| δ : B,β : B,∆ (name)
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• πi(µα.m)→ µα.m[[α]πi(•)/[α]•]
A = Ai

Γ ` µα.m : A1 ×A2 | ∆ (×E)

=⇒ Γ `m :⊥ | α : A1 ×A2,∆ (µ)

=⇒ Γ ` n : A1 ×A2 | ∆, for each n such that [α]n is a subterm of m (name)

=⇒ Γ ` πi(n) : Ai | ∆ (×E)

=⇒ Γ ` [α]πi(n) :⊥ | α : Ai ,∆ (name)

=⇒ Γ ` µα.m[[α]v • /[α]•] : Ai | ∆

• ini(µα.m)→ µα.m[[α]ini(•)/[α]•]
A = A1 +A2

Γ ` µα.m : Ai | ∆ (+I)

=⇒ Γ `m :⊥ | α : Ai ,∆ (µ)

=⇒ Γ ` n : Ai | ∆, for each n such that [α]n is a subterm of m (name)

=⇒ Γ ` ini(n) : A1 +A2 | ∆ (+I)

=⇒ Γ ` [α]ini(n) :⊥ | α : A1 +A2,∆ (name)

=⇒ Γ ` µα.m[[α]v • /[α]•] : A1 +A2 | ∆

• (v,µα.m)→ µα.m[[α](v,•)/[α]•]

A = A1 ×A2, Γ ` v : A1 | ∆, Γ ` µα.m : A2 | ∆ (×I)
=⇒ Γ `m :⊥ | α : A2,∆ (µ)

=⇒ Γ ` n : A2 | ∆, for each n such that [α]n is a subterm of m (name)

=⇒ Γ ` (v,n) : A1 ×A2 | ∆ (×I)
=⇒ Γ ` [α](v,n) :⊥ | α : A1 ×A2,∆ (name)

=⇒ Γ ` µα.m[[α](v,•)/[α]•] : A1 ×A2 | ∆

• (µα.m,n)→ µα.m[[α](•,n)/[α]•]

A = A1 ×A2, Γ ` µα.m : A1 | ∆, Γ ` n : A2 | ∆ (×I)
=⇒ Γ `m :⊥ | α : A1,∆ (µ)

=⇒ Γ ` p : A1 | ∆, for each p such that [α]p is a subterm of m (name)

=⇒ Γ ` (p,n) : A1 ×A2 | ∆ (×I)
=⇒ Γ ` [α](p,n) :⊥ | α : A1 ×A2,∆ (name)

=⇒ Γ ` µα.m[[α](•,n)/[α]•] : A1 ×A2 | ∆

• case µα.m . z.A of (x1.n1|x2.n2)→ µα.m[[α]case • . z.A of (x1.n1|x2.n2)/[α]•]

Γ ` µα.m : A1 +A2 | ∆, Γ ,xi : Ai ` ni : A | ∆, Γ ` A : Ui | ∆ (+E)

=⇒ Γ `m :⊥ | α : A1 +A2,∆ (µ)

=⇒ Γ ` p : A1 +A2 | ∆, for each p such that [α]p is a subterm of m (name)

=⇒ Γ ` case p . z.A of (x1.n1|x2.n2) : A | ∆ (+E)

=⇒ Γ ` [α]case p . z.A of (x1.n1|x2.n2) :⊥ | α : A,∆ (name)

=⇒ Γ ` µα.m
[
[α]case • . z.A of (x1.n1|x2.n2)/[α] •

]
: A | ∆

• subst (µα.m) n→ µα.m[[α]subst (•) n/[α]•]

A = B[q/x], Γ ` µα.m : p = q | ∆, Γ ` n : B[p/x] | ∆ (subst)

=⇒ Γ `m :⊥ | α : p = q,∆ (name)

=⇒ Γ ` l : p = q | ∆, for each l such that [α]l is a subterm of m (name)

=⇒ Γ ` subst l n : B[q/x] | ∆ (subst)

=⇒ Γ ` [α]subst l n :⊥ | α : B[q/x],∆ (subst)

=⇒ Γ ` µα.m[[α]subst (•) n/[α]•] : B[q/x] | ∆
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Lemma 7.12

By induction on the structure of normal forms. We need only consider normal forms that aren’t
values. Assume `m : A. The main technique we use is that the typing rule that applies to a normal
form is determined by the head of the normal form; and we show that this head cannot be given
the correct type. If m contains a free (co)variable, it cannot be typed by an empty (co)context.
Thus, we only consider closed normal terms. For m,n,N ∈ nf, these are:

• m = µα.[β]n (n , µδ.n′): Then β must be top, as the co-context is empty. Thus ` n : ⊥,
which contradicts consistency. Thus m is not typeable.

• m = case n . z.N of (x1.n1|x2.n2) (n , ini(n′),µα.n′) Then n : B1 + B2; but n , ini(n′) and
n ∈ nf, so won’t evaluate to a term of the form ini(n′), and thus cannot be typed by B1 +B2,
meaning m is not typeable by (case).

• m = πi(n) (n , (n1,n2),µα.n′) Then n : (x : A)×B, but n doesn’t reduce to terms of the form
(n1,n2),µα.n′ , so cannot be typed by (x : A)×B, so m is not typeable by (×Ei).

• m = xn1 · · ·nk (ni , µα.n′) x is an free variable, so m can’t be typed by an empty context.

• m = subst n1 n2 (n1 , refl) Then n1 : m = n, but n1 doesn’t reduce to refl, so n1 ∈
nf \ refl, thus no form of n1 can be typed by m = n, so m is not typeable by (subst)

B.2 Type Systems

ECCµ Reductions

ECCµ Reductions

(λx.m)n → let x = n in m, (m , µα.m′)
let x = v in m → m[v/x]

κ{let x =m in n} → let x =m in κ{n}
case ini(m) . z.A of (x1.n1|x2.n2) → let xi =m in ni

πi(v1,v2) → vi
subst refl m → m

κ{µα.m} → µα.m[[α]κ{•}/[α]•]
Explicitly, the (µ) reductions are:

(µα.m)n → µα.m[[α] •n/[α]•]
v(µα.m) → µα.m[[α]v • /[α]•]
µα.[α]m → m (α < fn(m))
[β]µδ.m → m[β/δ]
πi(µα.m) → µα.m[[α]πi(•)/[α]•]
(v,µα.m) → µα.m[[α](v,•)/[α]•]
(µα.m,n) → µα.m[[α](•,n)/[α]•]

let x = µα.m in n → µα.m[[α]let x = • in n/[α]•]
ini(µα.m) → µα.m[[α]ini(•)/[α]•]

case µα.m . z.A of (x1.n1|x2.n2) → µα.m[[α]case • . z.A of (x1.n1|x2.n2)/[α]•]
subst (µα.m) n → µα.m[[α]subst (•) n/[α]•]

Where, in the critical pair (λx.m)(µα.m), we prioritise the µ-reduction.
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ECCµ Subtyping

Subtyping Rules for ECCµ [59, 53]

Γ ` t : A | ∆ Γ ` A6 B | ∆
Γ ` t : B | ∆ Γ ` Ui 6 Ui+1 | ∆

Γ ` A1 : U | ∆ Γ ` A2 : U | ∆ Γ ` A1 ' A2 : U | ∆ Γ ,x : A1 ` B1 6 B2 | ∆
Γ ` (x : A1)→ B1 6 (x : A2)→ B2 | ∆

Γ ` A1 : U | ∆ Γ ` A2 : U | ∆ Γ ` A1 ' A2 : U | ∆ Γ ,x : A1 ` B1 6 B2 | ∆
Γ ` (x : A1)×B1 6 (x : A2)×B2 | ∆

Γ ` A1 6 A2 | ∆ Γ ` B1 6 B2 | ∆
Γ ` A1 +B1 6 A2 +B2 | ∆

Γ ` A1 : Ui | ∆ Γ ` A2 : Ui | ∆ Γ ` A1 ' A2 : Ui | ∆
Γ ` A1 6 A2 | ∆

Γ ` A1 6 A2 | ∆ Γ ` A2 6 A3 | ∆
Γ ` A1 6 A3 | ∆

B.3 Bidirectional Algorithms for ECCµ

Bidirectional Type Assignments

The rules are derived by combining the bidirectional style of [59] with the type system in Definition 7.7

Bidirectional Typing

Valid Contexts

(·)
∅ ` · | ∅

Γ ` A⇐Ui | ∆ . B (Ax)
Γ ,x : A ` x⇒ A | ∆ . x

Γ ` A⇐Ui | ∆ (αx)
Γ ` · | α : A,∆

Function Introduction/Formation
C→whnf (x : A)→ B Γ ,x : A `m⇐ B | ∆ . t

(→ I)
Γ ` λx.m⇐ C | ∆ . λx.t

C1→whnf Ui
Γ ` e1⇒ C1 | ∆ .A

C2→whnf Uj
Γ ,x : A ` e2⇒ C2 | ∆ . B (Π)

Γ ` (x : e1)→ e2⇒Uitj | ∆ . (x : A)→ B

Pair Introduction/Formation
C→whnf (x : A)×B Γ `m⇐ A | ∆ . t Γ ` n⇐ B[t/x] | ∆ . u

(×I)
Γ ` (m,n)⇐ C | ∆ . (t,u)

C1→whnf Ui
Γ ` e1⇒ C1 | ∆ .A

C2→whnf Uj
Γ ,x : A ` e2⇒ C2 | ∆ . B (Σ)

Γ ` (x : e1)× e2⇒Uitj | ∆ . (x : A)×B
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Coproduct Introduction/Formation

C→whnf A+B Γ `m⇐ A | ∆ . t Γ ` B⇐Ui | ∆
(+I1)

Γ ` in1(m)⇐ C | ∆ . in1(t)

C→whnf A+B Γ ` A⇐Ui | ∆ . Γ `m⇐ B | ∆ . t
(+I2)

Γ ` in2(m)⇐ C | ∆ . in2(t)

Non-Dependent Elimination

Γ `m⇒ C | ∆ . t C→whnf (x : A)→ B x < fv(B) Γ ` n⇐ A | ∆ . u
(→ E)

Γ `mn⇒ B | ∆ . tu

Γ `m⇒ A | ∆ . t Γ ,x : A ` n⇒ B | ∆ . u x < fv(B)
(let)

Γ ` let x =m in n⇒ B | ∆ . let x = t in u

Γ `m⇒ C | ∆ . t C→whnf (x : A)×B x < fv(B)
(×E1)

Γ ` π1(m)⇒ A | ∆ . π1(t)

Γ `m⇒ C | ∆ . t C→whnf (x : A)×B x < fv(B)
(×E2)

Γ ` π2(m)⇒ B | ∆ . π2(t)

Γ `m⇒D | ∆ . t
D→whnf A+B

z < fv(C)

Γ ` C⇒Ui | ∆ . E
Γ ,x : A ` n1⇒ E | ∆ . u1

Γ , y : B ` n2⇒ E | ∆ . u2
(+E)

Γ ` case m. z.C of (x.n1|y.n2)⇒ E | ∆ . case t . z.E of (x.u1|y.u2)

Dependent Elimination

Γ `m⇒ C | ∆ . t C→whnf (x : A)→ B Γ `nef n⇐ A | ∆ . u
(→ Ed )

Γ `mn⇒ B[n/x] | ∆ . tu

Γ `nef m⇒ A | ∆ . t Γ ,x : A ` n⇒ B | ∆ . u
(letd )

Γ ` let x =m in n⇒ B[m/a] | ∆ . let x = t in u

Γ `nef m⇒ C | ∆ . t C→whnf (x : A)×B
(×Ed1 )

Γ ` π1(m)⇒ A | ∆ . π1(t)

Γ `nef m⇒ C | ∆ . t C→whnf (x : A)×B
(×E2)

Γ ` π2(m)⇒ B[π1(m)/x] | ∆ . π2(t)

Γ `nef m⇒D | ∆ . t
D→whnf A+B Γ , z : A+B ` C⇒Ui | ∆ . E

Γ ,x1 : A ` n1⇒ E[in1(n1)/z] | ∆ . u1

Γ ,x2 : B ` n2⇒ E[in2(n2)/z] | ∆ . u2
(+E)

Γ ` case m. z.C of (x.n1|y.n2)⇒ C[m/z] | ∆ . case t . z.E of (x1.u1|x2.u2)

NEF

m ∈ nef Γ `m⇒ A | ∆ . t
(nefI)

Γ `nef m⇒ A | ∆ . t
Γ `nef m⇒ A | ∆ . t

(nefE)
Γ `m⇒ A | ∆ . t

m ∈ nef Γ `m⇐ A | ∆ . t
(nefI)

Γ `nef m⇐ A | ∆ . t
Γ `nef m⇐ A | ∆ . t

(nefE)
Γ `m⇐ A | ∆ . t
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Control

Γ `m⇐ 0 | α : A,∆ . t
(µ)

Γ ` µα.m⇐ A | ∆ . µα.t

Γ `m⇐ A | ∆ . t
(name)

Γ ` [α]m⇒ 0 | α : A,∆ . [α]t
Γ `m⇐ 0 | ∆ . t

(top)
Γ ` [top]m⇒ 0 | ∆ . [top]t

Types

(1)
Γ ` 1⇒Ui | ∆ . 1

(unit)
Γ ` 〈〉 ⇒ 1 | ∆ . 〈〉

(Ui )
Γ ` Ui ⇒Ui+1 | ∆ .Ui+1

Propositions

(P)
Γ ` P⇒U0 | ∆ .P

C1→whnf Ui
Γ ` e1⇒ C1 | ∆ .A

C2→whnf P

Γ ,x : A ` e2⇒ C2 | ∆ . B (ΠP)
Γ ` (x : e1)→ e2⇒ P | ∆ . (x : A)→ B

Equality

Γ ` p ≡ q | ∆ . t ≡ u
(refl)

Γ ` refl⇐ p = q | ∆ . reflt=u

Γ `m⇒ p = q | ∆ . t Γ ` n⇒ B[p/x] | ∆ . u Γ ,x : A ` B⇒Ui | ∆ (subst)
Γ ` subst m n⇒ B[q/x] | ∆ . subst t u

Bidirectional Subtyping

Subtyping [59]

A→whnf A
′ B→whnf B

′ Γ ` A′ 6: B′ | ∆
Γ ` A6 B | ∆

Subtyping for Types in whnf

Γ ` Ui 6: Ui+1 | ∆
Γ ` A1 6: A2 | ∆ Γ ` B1 6: B2 | ∆

Γ ` A1 +B1 6: A2 +B2 | ∆

Γ ` A1 ≡ A2⇐Ui | ∆ for some i Γ ,x : A1 ` B1 6: B2 | ∆
Γ ` (x : A1)×B1 6: (x : A2)×B2 | ∆

Γ ` A1 ≡ A2⇐Ui | ∆ for some i Γ ,x : A1 ` B1 6: B2 | ∆
Γ ` (x : A1)→ B1 6: (x : A2)→ B2 | ∆

Γ ` A ≡ B | ∆ Γ ` A⇐Ui | ∆ Γ ` B⇐Ui | ∆
Γ ` A6: B | ∆
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B.4 Derivations

¬∀(x : A).B→∃(x : A).¬B

x : ¬((w : A)→ B) ` x : ¬((w : A)→ B)

y : A ` y : A

z : B[y/w] ` z : B[y/w] | δ :⊥
z : B[y/w] ` [β]z :⊥ | δ :⊥,β : B[y/w]
z : B[y/w] ` µδ[β]z :⊥ | β : B[y/w]
` λz.µδ[β]z : ¬B[y/w] | β : B[y/w]

y : A ` (y,λz.µδ[β]z) : (w : A)×¬B | β : B[y/w]
y : A ` [α](y,λz.µδ[β]z) :⊥ | α : (w : A)×¬B,β : B[y/w]
y : A ` µβ.[α](y,λz.µδ[β]z) : B[y/w] | α : (w : A)×¬B
` λy.µβ.[α](y,λz.µδ[β]z) : (w : A)→ B | α : (w : A)×¬B

x : ¬((w : A)→ B) ` x(λy.µβ.[α](y,λz.µδ[β]z)) :⊥ | α : (w : A)×¬B
x : ¬((w : A)→ B) ` [top]x(λy.µβ.[α](y,λz.µδ[β]z)) :⊥ | α : (w : A)×¬B

x : ¬((w : A)→ B) ` µα[top]x(λy.µβ.[α](y,λz.µδ[β]z)) : (w : A)×¬B | α : (w : A)×¬B
` λx.µα[top]x(λy.µβ.[α](y,λz.µδ[β]z)) : ¬((w : A)→ B)→ (w : A)×¬B

A proof of ¬∀(x : A).B→∃(x : A).¬B in a νλµ-style calculus with dependent types.

y : ¬(w : A)→ B ` y : ¬(w : A)→ B

z : A ` z : A a : ¬B[z/w] ` a : ¬B[z/w]
a : ¬B[z/w] ` (z,a) : (w : A)×¬B x : ¬(w : A)×¬B ` x : ¬(w : A)×¬B

a : ¬B[z/w],x : ¬(w : A)×¬B ` [(z,a)]x :⊥
x : ¬(w : A)×¬B,z : A ` µa.[(z,a)]xB[z/w]

x : ¬(w : A)×¬B ` λz.µa.[(z,a)]x(w : A)→ B

x : ¬(w : A)→ B,y : ¬(w : A)×¬B ` [y](λz.µa.[(z,a)]x) :⊥
x : ¬(w : A)→ B ` µy.[y](λz.µa.[(z,a)]x)(w : A)×¬B

` λxµy.[y](λz.µa.[(z,a)]x) : ¬(w : A)→¬B→ (w : A)×¬B
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B.5 Implementation

B.5.1 Syntax

Dependently Typed Theorem Prover Syntax

〈name〉 ::= [unicode letters]
〈var〉 ::= ‘_′ | 〈name〉

〈term〉,〈type〉 ::= 〈name〉
| \(〈var〉+)→ 〈term〉
| \(〈var〉 : 〈type〉)→ 〈term〉
| 〈term〉+
| \〈var〉 : 〈var〉\ 〈term〉
| in(1|2) 〈term〉
| case-or 〈term〉 of (〈term〉|〈term〉)
| (〈term〉,〈term〉)
| proj(1|2) 〈term〉
| (〈term〉)
| ()
| ?[0− 9]+
| Top

| Bot

| 〈type〉 → 〈type〉
| 〈telescope〉 → 〈type〉
| 〈type〉 ‘ + ‘ 〈type〉
| 〈type〉 ‘ ∗ ‘′ 〈type〉
| (〈name〉 : 〈type〉) ‘ ∗ ‘ 〈type〉
| (〈type〉)
| case 〈term〉 of 〈pattTree〉
| elim 〈term〉 by 〈pattTree〉
| build 〈pattTree〉
| Univ | Prop
| refl

| subst 〈term〉 〈term〉
| 〈term〉 = 〈term〉

〈pattTree〉 ::= (〈var〉+→ 〈term〉)∗
〈decl〉 ::= 〈name〉 : 〈type〉

| 〈name〉 = 〈term〉
| variable〈name〉 : 〈type〉
| data 〈name〉 〈telescope〉 : 〈telescope〉 where

(〈name〉 : 〈telescope〉 → 〈type〉)∗
| record 〈name〉 〈telescope〉 : 〈telescope〉 where

(〈name〉 : 〈type〉)∗
〈telescope〉 ::= (〈name〉+ : 〈type〉)〈telescope〉

| 〈type〉 〈telescope〉
| ε
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